

Object Oriented

Programming with C# 6.0
 Language

3

Object Oriented

Programming with C# 6.0

Language

English Addition

August 2019

Linguistic Review

Hind M. Sami AL_Janabi

BSc. English Language/Linguistics

ISBN - 978-9923-718-62-9

005,133

ALkhouzaai, Wissam Ali

Object Oriented Programming With C#6.0

Language/ Wissam Ali ALkhouzaai.-Amman: Dar Ibn AlNafees for Publishing

and Distribution، 2018

() P.

Deposit No:2018/8/4226

Descriptors:/ computer programming lanuages// computer/

The Hashemite Kingdom Of Jordan

The Deposit Number at The National

Library

4226)/8/2018)

يتحمل المؤلف كامل المسؤولية القانونية عن محتوى مصنفه ولا يعبّر هذا المصنف
 عن رأي دائرة المكتبة الوطنية أو أي جهة حكومية أخرى

5

Dedication

This book is dedicated to the martyrdom of justice and righteousness: Imam

Hussain bin Ali, who led the battle of Taff (61) in Karbala.

Copying and reproducing this book without permission of the author is not

accepted.

7

Introduction

This book discusses C#, one of the most famous and commonly used

programming languages of the present.

The reason behind its preference likes in its simple yet strong structure and

efficiency in programming the required tasks. Moreover, it is characterized by

a unique flexibility that is retrieved from its object oriented programming

(oop) supportive design.

This programming language is using in building software like (Applied,

databases), dealing with the physical components of the computer and lastly

to build Web pages).

All of these unique characteristics helped distinguishing this language and

made professional and beginner programmers abandon their old language

once they have been acquainted with this language.

One point worth mentioning is that Microsoft, An American Corporation,

designed this programming language and distributed it as a bundle known as

(Visual studio .Net).

The book is divided into four sections: the first section is an introduction to

the known programming languages and their types, then a brief history from

the first languages up to the contemporary ones.

The second section discusses the central tokens for this language C#, and its

structure, in addition to commands of reading, printing, conditional,

repetitions, matrixes, structure, list and blocks.

The third section comprises the object –oriented programming and its details

(objects &class), then follows a presentation of the features (inheritance,

abstract, polymorphism and overloading).

At the end, dealing with errors and mistakes in C# were discussed.

The fourth section, the last, presents a detailed explanation of the

terminology, how to initiate reading and writing.

At the end, a number of solved and unsolved examples were annexed for the

reader to exercise and practice the theoretical information provided within this

book.

9

 Contents

Subject Page Number

Chapter 1: Introduction 7

Computer Programming Language. 8

Introduction to C# Language 13

The history of the C# language 15

Algorithms. 18

Flow chart. 21

Chapter 2: The basics of the C# language 28

Tokens. 29

Variables Definition in C#. 37

How to open C# window. 48

Literals in C#. 50

C# Program Structure. 52

Read Statement in the C#. 55

Write statement in the C#. 56

Conditional Statements. 61

If Statement. 61

Switch Case Statement. 67

Loop Statements. 69

For Loop. 69

While Loop. 73

Do While Loop Statement. 80

Array. 83

Single Dimensional Array. 83

Double Dimensional Array. 87

Structure in C#. 94

List in C#. 97

Blocks in C#. 102

Procedure. 102

Function. 106

Passing parameter to the function. 112

Recursive Function. 120

Chapter 3: Object Oriented Programming 123

Subject Page Number

Access Modifier. 131

Methods Types. 132

Constructors Methods. 138

OOP characteristic (Concepts). 143

Inheritance. 143

Abstract & interface Classes. 160

Polymorphism & Overloading. 164

Encapsulation. 168

Exception Handling. 170

Chapter 4: File Management in C# 175

I/O Class Types. 176

Create File Object. 178

Stream Reader Class. 176

Stream Writer Class. 181

File Access Class. 184

Home Work Questions. 191

11

Chapter 1
Introduction

Object Programming With C#6.0 language

1

1

Computer Programming Language.

Any of various languages for expressing a set of detailed instructions for a

digital computer.

Such instructions can be executed directly when they are in the computer

manufacturer-specific numerical form known as machine language, after a

simple substitution process when expressed in a corresponding assembly

language, or after translation from some “higher-level” language.

Although there are over 2,000 computer languages, relatively few are

widely used.

Machine and assembly languages are “low-level,” requiring a programmer

to manage explicitly all of a computer’s idiosyncratic features of data

storage and operation.

In contrast, high-level languages shield a programmer from worrying

about such considerations and provide a notation that is more easily

written and read by programmers.

http://www.britannica.com/EBchecked/topic/130429/computer
http://www.britannica.com/EBchecked/topic/354646/machine-language
http://www.britannica.com/EBchecked/topic/39243/assembly-language
http://www.britannica.com/EBchecked/topic/39243/assembly-language
http://www.britannica.com/EBchecked/topic/329791/language

Object Programming With C#6.0 language

2

2

Languages types.

1. Machine and assembly languages.

A machine language consists of the numeric codes for the operations that

a particular computer can execute directly.

The codes are strings of 0s and 1s, or binary digits (“bits”), which are

frequently converted both from and to hexadecimal (base 16) for human

viewing and modification.

Machine language instructions typically use some bits to represent

operations, such as addition, and some to represent operands, or perhaps

the location of the next instruction.

 Machine language is difficult to read and write, since it does not resemble

conventional mathematical notation or human language, and its codes

vary from computer to computer.

Assembly language is one level above machine language.

It uses short mnemonic codes for instructions and allows the programmer

to introduce names for blocks of memory that hold data. Thus, one might

write “add pay, total” instead of “0110101100101000” for an instruction

that adds two numbers.

Assembly language is designed to be easily translated into machine

language, although blocks of data may be referred to by names instead of

their machine addresses, assembly language does not provide more

sophisticated means of organizing complex information, like machine

language, assembly language requires detailed knowledge of internal

computer architecture, it is useful when such details are important, as in

programming a computer to interact with input/output devices (printers,

scanners, storage devices, and so forth).

http://www.britannica.com/EBchecked/topic/354646/machine-language
http://www.britannica.com/EBchecked/topic/39243/assembly-language
http://www.britannica.com/EBchecked/topic/288883/inputoutput-device

Object Programming With C#6.0 language

3

3

2. Algorithmic languages.

Algorithmic languages where designed to express mathematical or

symbolic computations; they can express algebraic operations in notation

similar to the mathematics and allow the use of subprograms that package

commonly using operations for reuse; they were the first high-level

languages.

A- FORTRAN Language.

B- ALGOL.

C- LISP.

D- C_Language.

3. Business-oriented languages.

A- COBOL.

B- SQL.

http://www.britannica.com/EBchecked/topic/214283/FORTRAN
http://www.britannica.com/EBchecked/topic/15125/ALGOL
http://www.britannica.com/EBchecked/topic/343293/LISP
http://www.britannica.com/EBchecked/topic/688344/C
http://www.britannica.com/EBchecked/topic/123375/COBOL
http://www.britannica.com/EBchecked/topic/569684/SQL

Object Programming With C#6.0 language

4

4

4. Education-oriented languages.

A. BASIC.

B. Pascal.

C. Logo.

D. Hyper talk.

http://www.britannica.com/EBchecked/topic/54939/BASIC
http://www.britannica.com/EBchecked/topic/445399/Pascal
http://www.britannica.com/EBchecked/topic/659523/Logo
http://www.britannica.com/EBchecked/topic/1086425/Hypertalk

Object Programming With C#6.0 language

5

5

5. Object-oriented languages.

Object-oriented languages help to manage complexity in large programs.

Objects package data and the operations on them, so only the operations

are publicly accessible and internal details of the data structures are

hidden.

This hiding information made large-scale programming easier by allowing

a programmer to think about each part of the program in isolation.

 In addition, objects may be derived from more general ones, “inheriting”

their capabilities, such an object hierarchy made it possible to define

specialized objects without repeating all that is in the more general ones.

Object-oriented programming began with the Simulate language (1967),

which added hiding information to ALGOL.

Another influential object-oriented language was Smalltalk (1980), in

which a program was a set of objects that interacted by sending messages

to one another.

A. C++& C#.

B. Ada.

C. Java.

D. Visual Basic.

http://www.britannica.com/EBchecked/topic/423783/object-oriented-language
http://www.britannica.com/EBchecked/topic/423783/object-oriented-language
http://www.britannica.com/EBchecked/topic/549425/Smalltalk
http://www.britannica.com/EBchecked/topic/688345/C
http://www.britannica.com/EBchecked/topic/4868/Ada
http://www.britannica.com/EBchecked/topic/301710/Java
http://www.britannica.com/EBchecked/topic/630827/Visual-Basic

Object Programming With C#6.0 language

6

6

6. Declarative languages.

Declarative languages, also called nonprocedural or very high level, are

programming languages in which (ideally) a program specifies what is to

be done rather than how to do it.

In such languages there is less difference between the specification of a

program and its implementation than in the procedural languages

described so far.

The two common kinds of declarative languages are logic and functional

languages.

A- Logic programming languages, of which PROLOG (programming in

logic).

B- Functional languages.

7. Scripting languages.

Scripting languages are sometimes called little languages.

http://www.britannica.com/EBchecked/topic/417798/declarative-language
http://www.britannica.com/EBchecked/topic/346177/logic
http://www.britannica.com/EBchecked/topic/346284/logic-programming-language
http://www.britannica.com/EBchecked/topic/478660/PROLOG
http://www.britannica.com/EBchecked/topic/222102/functional-language
http://www.britannica.com/EBchecked/topic/1086439/computer-scripting-language

Object Programming With C#6.0 language

7

7

They are intended to solve relatively small programming problems that do

not require the overhead of data declarations and other features needed

to make large programs manageable.

Scripting languages are using for writing operating system utilities, for

special-purpose file-manipulation programs, and, because they are easy to

learn, sometimes for considerably larger programs.

A- PERL (practical extraction and report language) was developed in the

late 1980s, originally for using with the UNIX operating system.

 It was intended to have all the capabilities of earlier scripting

languages.

PERL provided many ways to state common operations and thereby

allowed a programmer to adopt any convenient style.

In the 1990s it became popular as a system-programming tool, both

for small utility programs and for prototypes of larger ones.

Together with other languages discussed below, it also became

popular for programming computer Web “servers.”

Introduction to C# Language.

In June (2000), Microsoft Corp. announced about new environment called

(.Net) and a new language called (C#),C-Sharp, as the language of the (C#)

is a powerful representation of the language (strongly-typed) and with

object-oriented, designed in order to provide the best combination of

simplicity , expressive and performance.

The environment (.Net) is grounded on the run time, general language and

Common Language are similar to machine Java Virtual (JVM) and a set of

http://www.britannica.com/EBchecked/topic/899428/Perl

Object Programming With C#6.0 language

8

8

libraries that can be exploited by a large number of languages that can

work together when converted compiling to an intermediate language (IL).

That each of the (C#) and the environment of the (.Net) mutually

reinforcing as much as, and that some of the characteristics of the (C#) put

to work better with the (.Net) and some properties (.Net) put to work

better with the (C#) although the target of (.Net) that works well with

multiple languages.

(C#)Was constructed languages, is derived from a number of previous

languages, but the most obvious is a Java (Java Language) and (C ++) were

written language before (Andres Heyzberg Anders Hejlsberg) involvement

with (Scott Altmut Scott Wiltamuth) as that.

(Heyzberg) was also designed a (.Net) and lead the work.

The (C#) language is the simple language contains only 80 keywords and

keyword (12) of templates or data types, data types planted there.

But the (C#) has a high graphical capability when building modern

concepts code.

Including (C#) totally in support of the programming structure and

structural components based on component-based and object-oriented to

object-oriented, and that one would expect from any modern language.

So (C#) language was inspired by the best previous languages, the most

important characteristics of Small Talk, C++, Java, Delphi, also moved away

from many of the disadvantages , and it is very similar in form to (C ++,

Java) languages.

The development of language began by a small team at Microsoft, led by

two senior engineers, named: (Andres Heyzberg Anders Hejlsberg) and

(Scott Altmut Scott Wiltamuth) Famously (Heyzberg) invented (Turbo

Pascal) one of the first integrated development environments, as well as

for his leadership of the team work designed development (Delphi) and

Component Library group environment in which (VCL) from (Borland).

So the (C#) as a language of object-oriented supports the definition of

classes and deals with them, classes define types of new types allow an

expansion of the language in order to better address the issues to be

solved.

Object Programming With C#6.0 language

9

9

C# has the keywords to define new classes, curriculum, their properties

and to carry out packaging encapsulation (inheritance, polymorphism and

conformation) are the three pillars of programming oriented object.

In (C#) all is about class declaration as in the same definition (like in the

language of Delphi).

Classes defined in (C#) did not require a separate header files or the

Interface Definition Language (IDL), more than that (C#) supports pattern

(XML) new for internal documentation in the synthesis, which facilitates

the extraction of the documentation processes reference and assistance

to the application files.

The (C#) also Supports interfaces, and is a way contract with classes for

limited services only in the parameters required by the interface.

In (C#) classes cannot genetics inherit only one out, but classes can

implement multiple interfaces.

When you execute the facade classes (C#) to provide all functions

specified by the interface.

The (C#) also Supports structs, and is a concept that completely changed

from what it was in C ++.

In C# building is to be somewhat restricted, and is thin that does not

constitute a burden when it is created on the operating system or memory

as in the case of the classes.

Building structs cannot inherit from classes or inheritance from it, but

classes could implement Interface.

The (C#) provides the elements of component-oriented, such as

properties, events, and builders definition are called attributes.

Oriented programming component supported in partial (CLR and in .Net)

environment where you store your profile data synthesis classes.

Metadata describing the classes and components of the curriculum and

properties, as well as the security of their needs, and other features such

Object Programming With C#6.0 language

10

10

as if it can be serialized to pass through the borders of networks, or

synthesis container to how to deal with jobs.

Therefore, the classes are compiled and integrated unit of information, so

the environment can host her know them alone and how to read the

definition of data classes, which does not need further information from

separate sources.

Using C# and CLR can add specific metadata classes create their own

attributes.

On the other hand it is possible to read the special definition data using

CLR types are showing this data through reflection characteristics

reflection in it.

Also assembly is a collection of files that appear to the programmer as if

they were critical link library (DLL) file or an executable file and it is

complex in (.Net) main unit in order to do reuse , version control and

security.

CLR provides a set of classes for handling complexes.

The (C#) also provides support direct access to memory using pointers

pattern (C++) and keywords in order to restrict such operations as the

(unsafe) and to alert (garbage collector) in the CLR that does not pick

objects up to which they refer indicators until they are released by the

program.

The history of C# language.

Development of (.Net) platform began that had a set of class libraries,

which named caretaker round Simple Managed C system or Acronym SMC

using to do so.

Later, specifically in January 1999 form (Anders Hejlsberg) team of

developers in order to build a new language named (Cool), and is a name

of acronym for the phrase object-language orientation is similar to

language (C).

Object Programming With C#6.0 language

11

11

Any (C-like Object Oriented Language), Microsoft decided to maintain this

name but he abandoned it later for legal reasons related to the rights of

registered marks.

In parallel with that (.Net) project was officially announced at a

conference for professional developers (PDC) in July 2000 and was

renamed to (C#) language was also exported the private execution time

language (ASP.net) In addition to classroom libraries to this language.

Mark designed the Java language (James Gosling) and (Bill Joy), one of the

founders of the company (Sun Microsystems) that brought in a language

(Java).

That language (C#) is not only a traditional Java language; (Gosling) said

(“It is as java somewhat, but after giving up reliability, productivity and

safety").

Then wrote all of (Klaus Kreft) and (Ongelka Langer) in an article for them

in a blog (The Java Lucy # of GTA almost identical programming.

This is a repeat tediously lacks creativity), it is very difficult to argue that

the (Java) or (C#) is a programming language revolutionary who changed

the way we write software, we have borrowed (C#) a lot of (Java) and vice

versa.

Where the supports (C#) canning feature dismantling canning now and

soon you will find a similar feature in the (Java).

(Anders Hejlsberg) in July 2000 said that the (C#) is not a "version of Java"

but it is "much closer to the language of (C++) in terms of design.

In November 2005 announced a version (2.0) of (C#) It began here (C#)

and Java development in a growing divergence trends.

The first and most important of these differences was to add the public

styles Generics to both languages where he achieved these very

stereotypes difference where the (C#) deals with the public styles real

rows and generate their own code execution time, while Java with these

styles feature had added treat to manage language the developer of a

Object Programming With C#6.0 language

12

12

public writing code as the interpreter was able to ensure that only healthy

patterns, while these patterns are not turning into a real-time

implementation patterns are not generating its own code along the lines

of (C#).

In addition, a set of important features have been added to the (C#) in

order to enable the use of the functional programming Grace note Link

added in version (3.0) and frame programmatic support for expressions

(Lambda) and ancillary roads and styles are called.

These features enable the developer to use functional programming

techniques when it is advisable to do so.

Design of the C# language goals.

The most important goals that led to the design of this language are

summarized in the following points:

1. C# language should be simple and modern, general-use object-

oriented.

2. The language should provide the investigation in support of the

principles of software engineering such as strong verification of patterns

or what is known as the (static verification) , verification of the limits of

Object Programming With C#6.0 language

13

13

the matrices and the discovery of attempts to use variables are

configured and automatic garbage collection.

As well as emphasizing the importance of durability, sustainability and

productivity software programmer.

3. The use of language enables you to develop software components

usable in distributed environments.

4. The load source code with the goal of high importance, as well as

programmed load, especially for an experienced C++ language and the

language C.

5. Support for localization and globalization with a high importance of

the goal.

6. C# programming language should be suitable for private embedded

systems and host systems, whether large applications use complex

operating systems, or simple applications have specific functional

applications.

7. Although it should be on applications written in C# language to

economize on memory use and processing power, but the language is

not intended to compete directly with the performance and size of

applications written in C or assembly language.

Naming.

The name of "C sharp" was inspired by the music symbol (#) indicates

where the symbol (♯) that the note have written elevated more by half a

musical note, similar to the label with the language of the name (C++)

which indicates the ("++") to the need to unstable increase (1).

Object Programming With C#6.0 language

14

14

Looks like the symbol (♯) form of four signs (+) in the network (2 X 2) to

imply that language is increasing of (1) the language (C++).

Has been chosen as the net symbol (#) Unicode (U code +0023) to

represent Sharp icon in the scripting language named instead of the

symbol (#) Unicode (U code + 266F) because of technical limitations

prevent the show, such as lack of support for standard lines and some

browsers to code (♯) as well as the lack of it on the keyboard.

This tradition also dependence on the standard language descriptions

(ECMA 334).

In any case, use Microsoft's true musical icon when they can practically do

so, for example, in advertising campaigns or on the product casing.

Subsequent used "mustache" in a number of .NET languages based on

other languages, including languages (J #).

Where the language of dot Net designed by Microsoft through the

derivation of the language (Java) and the language (A Sharp A#) derived

from the language of (Ada) and the language of functional programming (F

Sharp F #).

Algorithms.

It is a several of arguments instructions to execute arithmetic operations

and logical operations and other wise with form sequential and argument.

For Writing a successful program, first it requires to analyze and design a

successful program Analysis process leading up to write the program, thus

must be expressed in general terms, and as we mentioned in the

definition of the algorithm is a set of public steps to resolve a particular

issue and therefore, must be expressed in general terms independent of

the programming language.

There are many ways to express the algorithm like; charts Stream, charts

and semi-encryption schemes and all of these methods show the program

works in different methods.

Object Programming With C#6.0 language

15

15

The algorithm formation process begins defining issue followed by the

analysis process to develop and establish general rules of the issue and

turn it into a simple procedure to resolve the matter, in order to be

successful algorithm should have certain characteristics, such as.

o Finitude.

o Cohesion.

o Reliability.

The algorithm is a label that name is an ascription of the Arabic scientist,

Abu Ja'far Muhammad ibn Musa al-Khwarizmi, a mathematician.

What are the terms of writing the algorithm?

1. Every algorithm have a beginning and an end.

2. The algorithm can be written in any language. (Arabic, English ...)

3. Taken into account when writing the algorithm to be shortened as

much as possible.

4. Each step must be numbered in the algorithm, where the figure is one

that represents the first step in the solution which is the beginning.

5. Advisable writing variables in the algorithm in English if possible.

6. Prefers writing arithmetic and logical operations the same way as

written in the program if possible.

Object Programming With C#6.0 language

16

16

7. Whenever solution contains fewer steps, the more the better.

8. Use the minimum number of steps and the lowest number of variables

to arrive at a solution.

9. Last step in the algorithm is the end, represents the end to resolve the

matter.

10. There are an infinite number of solutions for any issue, but whenever

the number of steps the solution is less, the better.

Algorithms Structure.

There are three structures to build programs and writing algorithms, they

are.

1. Sequence.

The algorithm is a set of sequential instructions, these instructions may be

either simple or from the following two types.

2. Selection.

That some problems can't be solved by a simple sequence of instructions,

and you may need to test some of the conditions and look at the result of

the test, if the result is correct track Includes sequential instructions, and if

the wrong follow another path different from the instructions.

This method is the self-styled decision or choice.

3. Repetition.

When solving some of the problems it is necessary to reproduce the same

sequence of steps a number of times.

This is so-called redundancy.

Example 1.

Write algorithm to find the marks average of three subjects?

 AV= (D1+D2+D3)/3

1- Begin.

2- Read Three Degree (D1, D2, D3).

3- Execute the equivalence Av= (D1+D2+D3)/3.

4- Write (Av).

5- End.

Object Programming With C#6.0 language

17

17

Example 2.

Write algorithm to find the area of the circle, so we can use the following

equation to find this area?

A=R
2
 * P

1- Begin.

2- Read (R, P).

3- Execute the equivalence A=R*R*P.

4- Write (A).

5- End.

Example 3.

Write algorithm to find the value of (Y) So:

X If X > 0

 Y=

-X If X < 0

1- Begin.

2- Read (X).

3- If X>=0 Then Y=X And Go To Step 5.

4- Y=-X.

5- Write (Y).

6- End.

Flow chart.

It is a photographer for the algorithm shows the steps to solve the problem

from beginning to end which hide details to give a general picture of the

solution representation.

It describes the flow of operations in the program including loops, control

structures and decision-making.

Object Programming With C#6.0 language

18

18

Flow chart Symbols.

The following figures representing the symbols using to represent the

problem solution by flow chart.

Symbol Operation

Start And End

Read And Write

Process

Make decision

Object Programming With C#6.0 language

19

19

Symbol Operation

Direction of Operation

There are three types of flow charts, they are.

1- Sequential Flowcharts.

They are sequential steps to do specific job, they are shown in the

following flowchart.

Start

Enter

number a

Enter

number b

Sum=a+b

Print sum

end

Object Programming With C#6.0 language

20

20

2- Branched Flowcharts.

These types will not be sequential, but will be like branches, they are

shown in the following flowchart.

Start

Enter

number a

Enter

number b

Print div

end

B=0Print error Div=a/b

Object Programming With C#6.0 language

21

21

3- Loop Flowcharts.

These types will have specific loop to perform a specific job, they are

show in the following flowchart.

i=1

Amly=1

Amly=amly*i

i=i+1

i<=5

end

Print error

Example 1.

Write algorithm and draw the flowchart to find ambulant circle?

A=2*R*P

Object Programming With C#6.0 language

22

22

1- Begin.

2- Read (R, P).

3- Execute A=2*R*P.

4- Write (A).

5- End.

Begin

Read (R , P)

A= 2 * R * P

End

Write (A)

Object Programming With C#6.0 language

23

23

Example 2.

Write algorithm and draw the flow chart to read the value of (x). If (x)

positive write ("pos") or if (x) negative write ("nag")?

1- Begin.

2- Read (X).

3- If (X>=0) Then Write ("Pos") and Go To Step 5.

4- Write ("Nag").

5- End.

Begin

Read (X)

End

Write ("POS")

X

Write ("NAG")

X >= 0 X < 0

Object Programming With C#6.0 language

24

24

Example 3.

Write algorithm and draw the flow chart to find the value of (w) value so:

 X+1 if X>0

 W= 5 if X=0

 2X+1 if X<0

1- Begin.

2- Read (X).

3- If (X>0) Then W=X+1 And Go To Step 6.

4- If (X=0) Then W=5 and Go To Step6.

5- If (X<0) Then W=2*X+1.

6- Write (W).

7- End.

X > 0
X < 0

Begin

Read (X)

End

X

Write (W)

W = X + 1 W = 5 W = 2 * X

+ 1

Object Programming With C#6.0 language

25

25

Chapter 2
The basics of the C#

language

Object Programming With C#6.0 language

26

26

Object Programming With C#6.0 language

27

27

 Introduction.

C# is a programming language which it using for writing a computer

programs like, programming the server side code in a web application

developed by ASP.NET.

As well as we can using this language to programming data base and

applications, finally we can use this language to programming operating

systems.

It is like java. C# is intended to be the premier language for writing NGWS

(Next Generation Windows Services) applications in the enterprise

computing space.

The programming language C# derives from C and C++; however, it is

modern, simple, support for object-oriented, and type-safe.

Contributing to the ease of usage is the elimination for certain features of

C++, no more macros, no templates, and no multiple inheritances.

The aforementioned features create more problems than they provide

benefit especially for enterprise developers.

New features for added convenience are strict type safety, versioning,

garbage collection, and many more.

All these features are targeted at developing component-oriented

software.

Although you don't have the sheer power of C++, you become more

productive faster.

C# Features.

The C# programming language has some properties, like:

1. It is a case of sensitive language.

Object Programming With C#6.0 language

28

28

2. All the built in methods of classes must be written in Capital letter case,

for example.

Console.ReadLine ()

3. The extension of a C# program must be (.cs).

4. It is using for designing both kind of application (web based and

windows based).

Tokens.

The smallest individual units of a program are known as tokens. They

contain the following elements:

1. Identifiers.

It means the names of the variables, functions and arrays …etc. the C#

language has the following rules for naming:

1. It allows to use the letters and numbers and (_) in the naming.

2. It doesn't allow starting the name with a number.

3. It is a case of sensitive language (it is difference between the small

letter and capital letter).

4. It doesn't allow using the reserve word to name identifiers.

The following example shows the correct and incorrect identifier naming.

Incorrect Correct

1count Count

Hi$thier Test23

High-balance High _ balance

Not.

The C# language don't put any constraint at the identifier name length,

therefore all the letters of the name are important.

Object Programming With C#6.0 language

29

29

General Data Type.

The following figure shown the basic data types in C# language.

Identifiers types.

There are two types of the identifiers using in C# language, they are.

A. Variables.

A variable is nothing but a name given to a storage area that our programs

can manipulate.

Each variable in C# has a specific type, which determines the size and

layout of the variable's memory, the range of values that can be stored

Int Char Double Float

Integer Type Void Float Type

C# Data Type

Derived Type Built In Typed User Defined
Type
Structure
Union
Class
Enumeration

Object Programming With C#6.0 language

30

30

within that memory, and the set of operations that can be applied to the

variable.

C# language also allows defining other value types of variable like enum

and reference types of variables like class, which we will cover in

subsequent chapters.

For this chapter, let us study only basic variable types.

C# Data Types.

There are three major categories of the data types in C#, they are:

 Value types

 Reference types

 Pointer types

A. Values Types.

Values type variables can be assigned a value directly.

They are derived from the class System.Value Type.

The value types directly contain data.

Some examples are int, char, float, which stores numbers, alphabets, and

floating point numbers, respectively.

When you declare an int type, the system allocates memory to store the

value.

Object Programming With C#6.0 language

31

31

The following table lists the available value types in C# 2010:

Type Represents Range
Default

Value

bool Boolean value True or False False

byte 8-bit unsigned integer 0 to 255 0

char 16-bit Unicode character U +0000 to U +ffff '\0'

decimal

128-bit precise decimal

values with 28-29

significant digits

(-7.9 x 1028 to 7.9 x 1028) / 100

to 28 0.0M

double
64-bit double-precision

floating point type

(+/-)5.0 x 10-324 to (+/-)1.7 x

10308
0.0D

float
32-bit single-precision

floating point type

-3.4 x 1038 to + 3.4 x 1038
0.0F

int
32-bit signed integer type -2,147,483,648 to

2,147,483,647
0

long
64-bit signed integer type -923,372,036,854,775,808 to

9,223,372,036,854,775,807
0L

sbyte 8-bit signed integer type -128 to 127 0

short 16-bit signed integer type -32,768 to 32,767 0

uint
32-bit unsigned integer

type

0 to 4,294,967,295
0

ulong
64-bit unsigned integer

type

0 to

18,446,744,073,709,551,615
0

ushort
16-bit unsigned integer

type

0 to 65,535
0

To get the exact size of a type or a variable on a particular platform, you

can use the size of method.

Object Programming With C#6.0 language

32

32

The expression size of (type) yields the storage size of the object or type in

bytes. The following is an example to get the size of (int) type in any

machine:

Namespace DataTypeApplication

{

Class Program

{

Static void Main (string [] args)

{

Console.WriteLine ("Size of int: {0}",sizeof (int));

Console.ReadLine ();

}

}

}

When the above code is compiled and executed, it produces the following

result:

Size of int: 4

B. Reference Types.

The reference types do not contain the actual data stored in a variable,

but they contain a reference to the variables.

In other words, they refer to a memory location.

Using more than one variable, the reference types can refer to a memory

location.

If the data in the memory location is changed by one of the variables, the

other variable automatically reflects this change in value.

Example of built-in reference types are: object, dynamic and string. It is

illustrate in below:

Object Programming With C#6.0 language

33

33

C. Object Type.

The Object Type is the ultimate base class for all data types in C# Common

Type System (CTS).

Object is an alias for System.Object class.

So object types can be assigned values of any other types, value types, and

reference types, predefined or when a value type is converted to object

type, it is called boxing and on the other hand, when an object type is

converted to a value type, it is called unboxing.

object obj;

obj =100; // this is boxing

D. Dynamic Type.

You can store any type of value in the dynamic data type variable. Type

checking for these types of variables takes place at run-time.

Syntax for declaring a dynamic type is:

dynamic <variable_name> = value;

Example.

dynamic d =20;

Dynamic types are similar to object types except that type checking for

object type variables takes place at compile time, whereas that for the

dynamic type variables take place at run time.

E. String Type

The String Type allows you to assign any string values to a variable.

It is an alias for the System.String class.

Object Programming With C#6.0 language

34

34

It is derived from object type.

The value for a string type can be assigned using string literals in two

forms: quoted and @quoted.

Example.

String str ="Tutorials Point";
A @quoted string literal looks like:

@"Tutorials Point";

The user-defined reference types are: class, interface, or delegate. We will

discuss these types in later chapter.

F. Pointer Types

Pointer type variables store the memory address of another type. Pointers

in C# have the same capabilities as in C or C++.

Syntax for declaring a pointer type is:

Type* identifier;

Example,

char* cptr;

int* iptr;

C# Type Conversion.

Type conversion is basically a type casting or converting one type of data

to another type. In C#, type casting has two forms:

 Implicit type conversion: these conversions are performed by C# in a

type-safe manner. Examples are conversions from smaller to larger

integral types and conversions from derived classes to base classes.

Object Programming With C#6.0 language

35

35

 Explicit type conversion: these conversions are done explicitly by users

using the pre-defined functions. Explicit conversions require a cast

operator.

The following example shows an explicit type conversion:

namespace TypeConversionApplication

{

 class ExplicitConversion

 {

 static void Main(string[] args)

 {

double d = 5673.74;

int i;

 // cast double to int.

 i = (int)d;

Console.WriteLine (i);

 Console.ReadKey ();

 } } }

When the above code is compiled and executed, it produces the following

result:

5673

C# Type Conversion Methods.

C# provides the following built-in type conversion methods:

No. Methods & Description

1
ToBoolean

Converts a type to a Boolean value, where possible.

2
ToByte

Converts a type to a byte.

3
ToChar

Converts a type to a single Unicode character, where possible.

4
ToDateTime

Converts a type (integer or string type) to date-time structures.

Object Programming With C#6.0 language

36

36

5
ToDecimal

Converts a floating point or integer type to a decimal type.

6
ToDouble

Converts a type to a double type.

7
ToInt16

Converts a type to a 16-bit integer.

8
ToInt32

Converts a type to a 32-bit integer.

9
ToInt64

Converts a type to a 64-bit integer.

10
ToSbyte

Converts a type to a signed byte type.

11
ToSingle

Converts a type to a small floating point number.

12
ToString

Converts a type to a string.

13
ToType

Converts a type to a specified type.

14
ToUInt16

Converts a type to an unsigned int type.

15
ToUInt32

Converts a type to an unsigned long type.

16
ToUInt64

Converts a type to an unsigned big integer.

Variables Definition in C#.

The general form of variables definition in C# is shown in below.

<data_type> <variable_list>;

Here, the data type must be a valid C# data type including char, int, float,

double, or any user-defined data type, etc., and variables list may consist

of one or more identifier names separated by commas.

Some valid variables definitions are shown here:

int i;

Object Programming With C#6.0 language

37

37

char ch;

float salary;

double d;

int x , y;

Note.

Note that we can initialize a variables at the definition time as:

Int i = 100;

char ch = 'a';

Variables Initialization in C#.

Variables are initialized (assigned a value) with an equal sign followed by a

constant expression. The general form of initialization is:

variable_name = value;

Variables can be initialized (assigned an initial value) in their declaration.

The initializer consists of an equal sign followed by a constant expression

as:

<data_type> <variable_name> = value;

Some examples are:

int d = 3; /*initializing d*/

float z = 22.4; /*initializes z.*/

double pi = 3.14159; /*declares an approximation of pi.*/

char x = 'x'; /* the variable x has the value 'x'. */

It is a good programming practice to initialize variables properly,

otherwise program would produce unexpected result.

Try the following example which makes use of various types of variables:

Object Programming With C#6.0 language

38

38

namespace VariableDefinition

{

 class Program

 {

 static void Main(string[] args)

 {

int a;

 int b ;

 double c;

 a = 10;

 b = 20;

 c = a + b;

 Console.WriteLine ("C=" + c);

 Console.ReadLine ();

 }

 }

}

When the above code is compiled and executed, it produces the following

result:

C=30

Accepting Values from User.

The Console class in the System namespace provides a function ReadLine

()

for accepting input from the user and store it into a variable. For example.

int num;

num = Convert.ToInt32(Console.ReadLine());

Note.

The function Convert.ToInt32 () converts the data entered by the user to

int data type, because Console.ReadLine () accepts the data in string

format.

Object Programming With C#6.0 language

39

39

Expression in C#:

It is a syntax expression that has two sides left side and right side, so the

left side must has one variable and doesn't allow to be constant or

functional, while the right one may be constant or a mix from variables

and operations.

Example1.

a = 20;

In the above example the left side is variable and the right one is constant.

Example2.

x = y + z;

In the above example the left side is variable and the right on is a mix of

variables and operations.

Example3.

Ch = Console.ReadLine ();

In the above example the left side is variable and the right one is built in

function.

Note.

In C# language we can sign many variables to the same value in one

statement, for example.

x = y = z = 20;

Note.

The following expression is not a valid statement and would generate

compile-time error because we equal constant value to other constant

value.

10 = 20;

Object Programming With C#6.0 language

40

40

B. Constants.

They are fixed values which didn't change during execution of the

program.

The constants refer to fixed values that the program may not alter during

its execution.

These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a

floating constant, a character constant, or a string literal. There are also

enumeration constants as well.

The constants are treated just like regular variables except that their

values cannot be modified after their definition.

Defining Constants.

Constants are defined by using the const keyword.

Syntax for defining a constant is:

Const <data_type> <constant_name> = value;

The following program demonstrates defining and using a constant in your

program:

using System;

namespace Declaring Constants

{

 class Program

 {

 static void Main(string[] args)

 {

 const double pi = 3.14159; // constant declaration

Object Programming With C#6.0 language

41

41

 double r;

 Console.WriteLine ("Enter Radius: ");

 r = Convert.ToDouble (Console.ReadLine ());

double areaCircle = pi * r * r;

Console.WriteLine ("Radius: {0}, Area: {1}", r, areaCircle);

 Console.ReadLine ();

 }

 }

}

Note.

When the above code is compiled and executed, it produces the following

result:

Enter Radius:

3

Radius: 3, Area: 28.27431

2. Keywords.

They are reserve words for language, which implements any particular

meaning in your program, and they can't use by the user as identifiers in

program.

So every language has some reserve words. In C# language we have many

words like.

(Using – system – namespace – console – for – while – if ……etc.)

3. Operators.

An operator is a symbol that tells the compiler to perform specific

mathematical or logical manipulations.

Object Programming With C#6.0 language

42

42

C# is rich in built-of operators and provides the following type of

operators:

 Arithmetic Operators.

 Relational Operators.

 Logical Operators.

 Bitwise Operators.

 Assignment Operators.

 Misc. Operators.

This tutorial will explain the arithmetic, relational, logical, bitwise,

assignment and other operators one by one.

1. Arithmetic Operators

The following table shows all the arithmetic operators supported by C#.

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

%
Modulus Operator and remainder of after

an integer division
B % A will give 0

++
Increment operator increases integer value

by one
A++ will give 11

--
Decrement operator decreases integer

value by one
A-- will give 9

Object Programming With C#6.0 language

43

43

2. Relational Operators.

The following table shows all the relational operators supported by C#.

Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

==

Checks if the values of two operands are

equal or not, if yes then condition becomes

true.

(A == B) is not true.

!=

Checks if the values of two operands are

equal or not, if values are not equal then

condition becomes true.

(A != B) is true.

>

Checks if the value of left operand is greater

than the value of right operand, if yes then

condition becomes true.

(A > B) is not true.

<

Checks if the value of left operand is less than

the value of right operand, if yes then

condition becomes true.

(A < B) is true.

>=

Checks if the value of left operand is greater

than or equal to the value of right operand, if

yes then condition becomes true.

(A >= B) is not true.

<=

Checks if the value of left operand is less than

or equal to the value of right operand, if yes

then condition becomes true.

(A <= B) is true.

3. Logical Operators.

The following table shows all the logical operators supported by C#.

Assume variable A holds Boolean value= True and variable B holds

Boolean value= False, then:

Operator Description Example

&& Called Logical AND operator. If both the

operands are non-zero then condition becomes

(A && B) is

false.

Object Programming With C#6.0 language

44

44

true.

|| Called Logical OR Operator. If any of the two

operands is none zero then condition becomes

true.

(A || B) is

true.

! Called Logical NOT Operator. Use to reverses

the logical state of its operand. If a condition is

true then Logical NOT operator will make false.

!(A && B) is

true.

4. Bitwise Operators.

Bitwise operators works on bits and performs bit by bit operation. The

truth table for &, | and ^ are as follows:

P q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Example.

Assume that, if A = 60; and B = 13; now in binary format they will be as

follows:

A = 0011 1100

B = 0000 1101

A & B = 0000 1100

A | B = 0011 1101

A ^ B = 0011 0001

~ A = 1100 0011

The Bitwise operators supported by C# are listed in the following table.

Assume variable A holds 60 and variable B holds 13 then:

Object Programming With C#6.0 language

45

45

Operator Description Example

&
Binary AND Operator copies a bit to the

result if it exists in both operands.

(A & B) will give 12.

which is 0000 1100

|
Binary OR Operator copies a bit if it exists

in either operand.

(A | B) will give 61,

which is 0011 1101

^
Binary XOR Operator copies the bit if it is

set in one operand but not both.

(A ^ B) will give 49,

which is 0011 0001

~
Binary Ones Complement Operator is

unary and has the effect of 'flipping' bits.

(~A) will give -61, which

is 1100 0011 in 2's

complement due to a

signed binary number.

<<

Binary Left Shift Operator. The left

operands value is moved left by the

number of bits specified by the right

operand.

A << 2 will give 240,

which is 1111 0000

>>

Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 will give 15,

which is 0000 1111

5. Assignment Operators.

The following assignments are operators supported by C#:

Operator Description Example

=

Simple assignment operator, Assigns

values from right side operands to left

side operand

C = A + B will

assign value of A +

B into C

+=

Add AND assignment operator, It adds

right operand to the left operand and

assign the result to left operand

C += A is

equivalent to C = C

+ A

Object Programming With C#6.0 language

46

46

-=

Subtract AND assignment operator, It

subtracts right operand from the left

operand and assign the result to left

operand

C -= A is

equivalent to C = C

- A

*=

Multiply AND assignment operator, It

multiplies right operand with the left

operand and assign the result to left

operand

C *= A is

equivalent to C = C

* A

/=

Divide AND assignment operator, It

divides left operand with the right

operand and assign the result to left

operand

C /= A is

equivalent to C = C

/ A

%=

Modulus AND assignment operator, It

takes modulus using two operands and

assign the result to left operand

C %= A is

equivalent to C = C

% A

<<= Left shift AND assignment operator
C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator
C >>= 2 is same as

C = C >> 2

&= Bitwise AND assignment operator
C &= 2 is same as

C = C & 2

^=
bitwise exclusive OR and assignment

operator

C ^= 2 is same as C

= C ^ 2

|= bitwise inclusive OR and assignment

operator

C |= 2 is same as C

= C | 2

6. Misc Operators.

There are few other important operators including size of, type of and (? :)

supported by C#. they are:

Operator Description Example

sizeof() Returns the size of a data type. Sizeof (int), will return 4.

typeof() Returns the type of a class. Typeof (StreamReader);

&
Returns the address of a

variable.

&a; will give actual address of the

variable.

Object Programming With C#6.0 language

47

47

* Pointer to a variable. *a; will pointer to a variable.

? : Conditional Expression If Condition is true? Then value X :

Otherwise value Y

is Determines whether an object

is of a certain type.

If(Ford is Car) // checks if Ford is

an object of the Car class.

as Cast without raising an

exception if the cast fails.

Object obj = new

StringReader("Hello");

StringReader r = obj as

StringReader;

Operators Precedence in C#.

Operator’s precedence determines the grouping of terms in an expression.

This affects how an expression is evaluated.

Certain operators have higher precedence than others; for example, the

multiplication operator has higher precedence than the addition operator:

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator *

has higher precedence than +, so it firstly gets multiplied with 3*2 and

then adds into 7.

Here, operators with the highest precedence appear at the top of the

table, those with the lowest appear at the bottom.

Within an expression, higher precedence operators will be evaluated first.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & size of Right to left

Multiplicative * / % s Left to right

Additive + - Left to right

Object Programming With C#6.0 language

48

48

Shift <<>> Left to right

Relational <<= >>= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

How to open C# window.

We can open the C# window in .Net program by doing the following steps:

1- Go to the (File) menu then (New) after that (Project), it is shown in

below.

2- After pressing at (Project) it will appear the following window.

Object Programming With C#6.0 language

49

49

3- In the left of the above window, go to the (Resent Template) and press

at the (Visual C#), it will appear the following window.

4- Change the name of program and the location of saving then Press

(Console Application), it will appear the following window.

Object Programming With C#6.0 language

50

50

5- In the above window, we can write the C# code.

Literals in C#.

1. Integer Literals.

An integer literal can be a decimal, octal, or hexadecimal constant.

A prefix specifies the base or radix: 0x or 0X for hexadecimal, 0 for

octal, and no prefix id required for decimal.

An integer literal can also has a suffix that is a combination of U and L,

for unsigned and long, respectively.

The suffix can be uppercase or lowercase and can be in any order.

Here are some examples of integer literals:

212 /* Legal */

215u /* Legal */

0xFeeL /* Legal */

078 /* Illegal: 8 is not an octal digit */

032UU /* Illegal: cannot repeat a suffix */

Object Programming With C#6.0 language

51

51

These are other examples of various types of Integer literals:

85 /* decimal */

0213 /* octal */

0x4b /* hexadecimal */

30 /* int */

30u /* unsigned int */

30l /* long */

30ul /* unsigned long */

2. Floating-point Literals.

A floating-point literal has an integer part, a decimal point, a fractional

part, and an exponent part. You can represent floating point literals

either in decimal form or exponential form. Here are some examples

of floating-point literals:

3.14159 /* Legal */

314159E-5L /* Legal */

510E /* Illegal: incomplete exponent */

210f /* Illegal: no decimal or exponent */

.e55 /* Illegal: missing integer or fraction */

While representing using decimal form, you must include the decimal

point, the exponent, or both and while representing using exponential

form you must include the integer part, the fractional part, or both.

The signed exponent is introduced by e or E.

3. Character Constants.

Character literals are enclosed in single quotes, e.g., 'x' and can be

stored in a simple variable of char type.

A character literal can be a plain character (e.g., 'x'), an escape

sequence (e.g., '\t'), or a universal character (e.g., '\u02C0').

Object Programming With C#6.0 language

52

52

There are certain characters in C# when they are preceded by a

backslash they will have special meaning and they are using to

represent like newline (\n) or tab (\t). Here, you have a list of some of

such escape sequence codes:

Escape

sequence

Meaning

\\ \ character

\' ' character

\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo Octal number of one to three digits

\xhh . . . Hexadecimal number of one or more digits

Example.

This is an example to show few escape sequence characters:

Namespace EscapeChar

{

 Class Program

 {

 Static void Main (string [] args)

 {

Console.WriteLine ("Hello\tWorld\n\n");

 Console.ReadLine ();

 }

 }

 }

Object Programming With C#6.0 language

53

53

When the above code is compiled and executed, it produces the

following result:

Hello World

4. String Literals

String literals or constants are enclosed in double quotes "" or with @"".

A string contains characters that are similar to character literals: plain

characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and

separating the parts using whitespaces.

Here are some examples of string literals. All the three forms are

identical strings.

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"

@"hello dear"

C# Program Structure.

A C# program basically consists of seven major parts, it is illustrated in the

following:

 Namespace declaration.

 A class.

 Class methods.

 Class attributes.

 A Main method.

 Statements & Expressions.

 Comments.

Let us look at a simple code that would print the words "Hello World":

Object Programming With C#6.0 language

54

54

Example.

Using System;

Namespace HelloWorldApplication

{

Class HelloWorld

{

Static void Main (string [] args)

{

/* my first program in C# */

Console.WriteLine("Hello World");

Console.ReadKey();

}

}

}

When the above code is compiled and executed, it produces the following

result:

Hello World

Let us look at various parts of the above program:

 The first line of the program using System: the using of keyword is to

include the System namespace in the program.

A program generally has multiple using statements.

 The next line has the namespace declaration: A namespace is a

collection of classes.

The HelloWorldApplication namespace contains the class HelloWorld.

 The next line has a class declaration: the class HelloWorld contains the

data and method definitions that your program uses.

Classes generally would contain more than one method.

Object Programming With C#6.0 language

55

55

Methods define the behavior of the class.

However, the HelloWorld class has only one main method.

 The next line defines the main method: which is the entry point for all

C# programs. The Main method states what the class will do when

executed

 The next line /*...*/ will be ignored by the compiler and it has been

put to add additional comments in the program.

 The main method specifies its behavior with the statement

Console.WriteLine("Hello World");

WriteLine is a method of the Console class defined in the System

namespace. This statement causes the message "Hello, World!" to be

displayed on the screen.

 The last line Console.ReadKey (): it is for the VS.NET Users.

This makes the program wait for a key press and it prevents the screen

from running and closing quickly when the program is launched from

Visual Studio .NET.

Compile & Execute a C# Program.

If you are using Visual Studio.Net for compiling and executing C# program,

take the following steps:

o Start Visual Studio.

o On the menu bar, choose File, New, and Project.

o Choose Visual C# from templates, and then choose Windows.

o Choose Console Application.

o Specify a name for your project, and then choose the OK button.

o The new project appears in Solution Explorer.

o Write code in the Code Editor.

o Click the Run button or the F5 key to run the project. A Command

Prompt window appears that contains the line Hello World.

Object Programming With C#6.0 language

56

56

You can compile a C# program by using the command-line instead of the

Visual Studio IDE:

o Open a text editor and add the above-mentioned code.

o Save the file as helloworld.cs

o Open the command prompt tool and go to the directory where you

saved the file.

o Type cschelloworld.cs and press enter to compile your code.

o If there are no errors in your code, the command prompt will take you

to the next line and would generate helloworld.exe executable file.

o Next, type helloworld to execute your program.

o You will be able to see "Hello World" printed on the screen.

Read Statement in the C#.

To read any value from the keyboard in the C#, we can use (Read_

Statement). It is follow to Console class, the general form of this

statement is shown in below.

variable_name = variable_ type (Console.Read ());

o Variable type is optional, i.e. when we use int values, and then we will

use the following form.

Int a;

a = int.Parse (Console.Read ());

When we use float values, then we will use the following form.

Float a;

a = float.Parse (Console.Read ());

When we use character values, then we will use the following form.

Char ch;

Ch = Console.Read ();

Object Programming With C#6.0 language

57

57

o There are two types of the Read statements, they are:

1. Read_Statement: in this type, when we enter the values to the

program we should write all values in the same line, the general form

of this type is.

Variable_name = variable_ type (Console.Read ());

Example.

Int a;

a = int.Parse (Console.Read ());

2. ReadLine_Statement: when we use this type we should insert

every value to the program at one line, the general form of using this

statement is.

variable_name = variable_ type (Console.ReadLine ());

Example.

Int a;

a = int.Parse (Console.ReadLine ());

Write statement in C# language.

To write any value at the computer screen in the C# language, we can use

(Write Statement).

It is followed by the Console class, and the general form of this statement

is shown in below.

Console. Write (variable_name);

Note1.

Object Programming With C#6.0 language

58

58

If we want to write any text at the computer screen, we should put the

text between double quotation (" "), for example.

Console. Write ("Karbala University");

Note2.

If we want to write any variable at the computer screen, we don’t need to

put this variable between double quotation (" "), for example.

Console. Write (a);

Note3.

If we want to combine the variable with the text, we will use the following

form.

Console. Write ("Text" + variable);

Example.

Console. Write (" Sum= " + s);

Note4.

If we want to print out two variables or more than by one write

statement, we will use the following form.

Console. Write (variable1, variable2);

Example.

Console. Write (x, y);

Object Programming With C#6.0 language

59

59

Write Statement Types.

There are two types of write statement, they are:

1- Write_Statement: when we use this statement, then all values that

written at the computer screen will write at the same line, the general

form of using this statement is:

Console. Write (Variable_name);

Example.

Int a = 5;

Int b = 6;

Console. Write (a);

Console. Write (b);

5 6

2- WriteLine_Statement: when we use this statement, then all values

that written at the computer screen, will write every value at one line,

the general form of using this statement is:

Console.WriteLine (Variable_name);

Example 1.

Int a=5;

Int b=6;

Console.WriteLine (a);

Console.WriteLine (b);

 5

 6

Object Programming With C#6.0 language

60

60

Example 2.

Write program in C# language to read student marks in physics, chemistry

& math and calculate the total and average of the student?

Using System;

Using System.Collections.Generic;

Using System.Linq;

Using System.Text;

Namespace ConsoleApplication1

{

Class Program

 {

Static void Main (string [] args)

 {

Int a, b, c, s;

double av;

Console.WriteLine ("Enter the Mark of the Physic");

 a= int.Parse (Console.ReadLine ());

Console.WriteLine ("Enter the Mark of the Chemistry");

 b = int.Parse (Console.ReadLine ());

Console.WriteLine ("Enter the Mark of the Mathematic");

 c = int.Parse (Console.ReadLine ());

 s = a + b + c;

 av = (a + b + c) / 3;

Console.WriteLine ("the sum of this marks is: " + s);

Console.WriteLine ("the average of this marks is: " + av);

Console.Read ();

 }

 }

}

Object Programming With C#6.0 language

61

61

To execute this program we should go to the (Start Debugging) from Tools

bar or press (F5) from keyboard, like it is shown in below.

o The end statement in the above program was (Console.Read () ;). It is

using to showing the execution screen.

Object Programming With C#6.0 language

62

62

Example 3.

Write program in C# language to read length and breadth and calculate

the area of rectangle? So we can calculate the rectangle area from the

following equation.

Area = L * B

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication1

{

Class Program

 {

Static void Main (string[] args)

 {

int a, b, area;

Console.WriteLine ("Enter the Length of Rectangle");

 a= int.Parse (Console.ReadLine ());

Console.WriteLine ("Enter the Width of Rectangle");

 b = int.Parse (Console.ReadLine ());

 area = a * b ;

Console.WriteLine ("the area of the rectangle is: " + area);

Console.Read ();

 }

}}

Conditional Statements.

They are using for making the decision within your program and

sometimes move the execution to other place within program.

There are two types of conditional statement in C# language they are:

1. If statement.

2. Switch statement.

Object Programming With C#6.0 language

63

63

1. IF Statement.

This statement is using in C# language to execute statement or several

statements when materialize specific condition or many conditions are

written by programmer.

We can use different variations of if statement, so there are three types

of this statement, these are.

a) If else statement.

b) If else if ladder statement.

c) Nested if statement.

A. IF_Else Statement.

If we have a condition & there are two aspects of this condition, first for

True and second for False, then we can use the type of (If-Else)

statement.

The general form of this statement is.

If (condition)

{

 True statement 0block;

}

Else

 {

 False statement block;

 }

Example1.

Write program in C# language to check any given number is (even) or

(odd)?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

Object Programming With C#6.0 language

64

64

namespace ConsoleApplication1

{

Class Program

 {

Static void Main(string[] args)

 {

int a;

Console.WriteLine ("Please Insert Your Number");

a= int.Parse (Console.ReadLine ());

if (a % 2==0)

Console.WriteLine ("The Number is Even");

else

Console.WriteLine ("The Number is odd");

Console.Read ();

}

}

}

Note1.

If we have just one execution statement we don't need to put this

statement in brackets, for example:

If (x >=0)

Console.writeLine ("The Number is Positive");

Note2.

If we have more than one execution statement, we will need to put this

statement in brackets, for example.

If (x >=0)

 {

 Console.writeLine ("The Number is Positive");

 X = x + 23;

 }

Object Programming With C#6.0 language

65

65

Example2.

Write a program in C# language to read age of a person & print whether

he / she can vote or not?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication1

{

class Program

 {

static void Main(string[] args)

 {

int a;

Console.WriteLine ("Please Insert the Age of Person");

a= int.Parse (Console.ReadLine ());

if (a >= 18)

Console.WriteLine ("He / She Can Vote");

else

Console.WriteLine ("He / She Can't Vote");

Console.Read ();

 }

 }

}

Home Work1.

Write a program in C# language to read student mark in oop subject and

check whether the student is Pass or Fail?

Home work2.

Write a program in C# language to read specific number from keyboard

and check whether the number is Positive or Negative?

Object Programming With C#6.0 language

66

66

B. IF_Else_IF Statement.

If we have more than one condition then we can use If–Else-If ladder

statement. The general form of this statement is:

If (condition-1)

 Execution Statement-1;

Else if (condition-2)

 Execution Statement-2;

Else if (condition-n)

 Execution Statement-n;

Else

 Default statement;

Example 1.

Write a program in C# language to read 3 values from keyboard & print

out the largest one at computer screen?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication1

{

class Program

 {

static void Main(string[] args)

 {

int a,b,c;

Console.WriteLine ("Please Insert the First Number");

a= int.Parse (Console.ReadLine ());

Console.WriteLine ("Please Insert the Second Number");

Object Programming With C#6.0 language

67

67

 b = int.Parse (Console.ReadLine ());

Console.WriteLine ("Please Insert the Third Number");

 c = int.Parse (Console.ReadLine ());

if ((a > b) && (a>c))

Console.WriteLine ("The a Value is creator than b & c");

else if ((b > a) && (b > c))

Console.WriteLine ("The b Value is creator than a & c");

else

Console.WriteLine ("The c Value is creator than a & b");

Console.Read ();

 }

 }

}

Home Work.

Write a program in C# language to read a student marks in physics,

chemistry & math then calculate and print their total average of these

marks?

C. Nested IF Statement.

If we have in our program more than two conditions, then we will use

nested if statement. The general form of this statement is:

 If (condition)

 {

 If (condition)

 {

 }

 }

Object Programming With C#6.0 language

68

68

Example.

Write program in C# language to read 3 values from keyboard & print out

the largest one at computer screen?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication1

{

class Program

 {

static void Main(string[] args)

 {

int a,b,c;

Console.WriteLine ("Please Insert the First Number");

 a= int.Parse (Console.ReadLine ());

Console.WriteLine ("Please Insert the Second Number");

 b = int.Parse (Console.ReadLine ());

Console.WriteLine ("Please Insert the Third Number");

 c = int.Parse (Console.ReadLine ());

if ((a > b) && (a>c))

 {

Console.WriteLine ("The a Value is creator than b & c");

if ((b > c) && (b > c))

 {

Console.WriteLine ("The b Value is creator than a & c");

if ((c > a) && (c > b))

 {

Console.WriteLine ("The c Value is creator than a & b");

 }

 }

 }

Object Programming With C#6.0 language

69

69

Console.Read ();

 }

 }

}

2. Switch Case Statement.

It is also a decision making statement.

It works faster than if statement and more elegance, but the

disadvantage is that it doesn't support logical and relational operators.

The general form of this statement is:

Switch (expression)

 {

 Case value-1:

 Statement-1;

 Break;

 Case value-2:

 Statement-2;

 Break;

 Case value-n:

 Statement-n;

 Break;

 Default:

 Default statement;

Break;

 }

Object Programming With C#6.0 language

70

70

Example.

Write program in C# language to read two values & character, then

perform operation depending on the reading character, it is shown in the

following menu:

1. Addition operation, if the character is (+).

2. Subtraction operation, if the character is (-).

3. Multiplication operation, if the character is (*).

4. Division operation, if the character is (/).

If the user doesn't enter any choice of the above fourth choices, print out

the following sentence ("Please Insert Truth symbol")?

Solution.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication1

{

class Program

 {

static void Main(string[] args)

 {

int a, b;

float c;

char ch;

Console.WriteLine ("Please Insert the First Number");

 a = int.Parse (Console.ReadLine ());

Console.WriteLine ("Please Insert the Second Number");

 b = int.Parse (Console.ReadLine ());

Console.WriteLine ("Please Insert the operation");

Object Programming With C#6.0 language

71

71

 ch = Console.ReadKey ().KeyChar ;

Console.WriteLine ();

Switch (ch)

 {

case'+':

 c = a + b;

Console.WriteLine (" C=" + c);

break;

case'-':

 c = a - b;

Console.WriteLine (" C=" + c);

break;

case'*':

 c = a * b;

Console.WriteLine (" C=" + c);

break;

case'/':

 c = a / b;

Console.WriteLine (" C=" + c);

break;

default:

Console.WriteLine ("Please Insert Truth symbol ");

break;

 }

Console.Read ();

 } } }

Loop Statements.

Loop statements are using for repeating a block of program during finite

or infinite times.

It is also known as iterative or repetitive statement. It could be classified

into two categories:

1- Entry Controlled Loop.

2- Exit Controlled Loop.

Object Programming With C#6.0 language

72

72

1- Entry Controlled Loop.

This type of loop checks the condition, and if the condition is satisfied

then executes the body of the loop. “For Loop” & “While Loop” are

types of this category.

2- Exit Controlled Loop.

This type of loop executes at least one time either condition is satisfied

or not. “Do While Loop” is type of this category.

1- For Loop.

It is an entry controlled loop, it is executed single statement or several

statement at many times, and the general form of this loop will be as

following:

For (initialization value; test condition; increment/decrement)

{

 Body of the loop;

}

Example 1.

Write program in C# language to print out the values from 1 to 10 at the

computer screen, by using For Statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication2

Object Programming With C#6.0 language

73

73

{

class Program

 {

static void Main(string[] args)

 {

int x;

for (x = 1; x <= 10; x++)

 {

Console.WriteLine(x);

 }

Console.ReadLine ();

 }

 }

}

Example 2.

Write program in C# language to print the list of even values between (1)

to (50), by using For Statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication2

{

class Program

 {

static void Main(string[] args)

 {

int x ;

for (x = 1 ; x <= 50 ; x++)

 {

if (x % 2 ==0)

Console.WriteLine(x);

Object Programming With C#6.0 language

74

74

 }

Console.ReadLine ();

 }

 }

}

Example 3.

Write program in C# language to print out the values from 10 to 1, by

using For Statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication2

{

class Program

 {

static void Main(string[] args)

 {

int x ;

for (x = 10 ; x >= 1 ; x--)

 {

Console.WriteLine(x);

 }

Console.ReadLine ();

 }

 }

 }

Object Programming With C#6.0 language

75

75

Example 4.

Write program in C# language to print out the table of given number, by

using For Statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication2

{

class Program

 {

static void Main(string[] args)

 {

int x, no ;

Console.WriteLine (" Please Insert Your Number");

 no = int.Parse(Console.ReadLine());

for (x = 1; x <= 10; x++)

 {

Console.WriteLine(x * no);

 }

Console.ReadLine ();

 }

}

}

Example 5.

Write program in C# language to print out the following series:

 1

 0

 1

 0

 .

 .

Object Programming With C#6.0 language

76

76

 n times

By using For Statement?

Home Work1.

Write program in C# language to print out factorial of any given number,

by using For Statement?

Home Work 2.

Write program in C# language to calculate x to the power n, by using For

Statement?

2- While Loop.

It is also an entry controlled loop to iterative statement or many

statements many times specifically by a programmer, the general form of

this loop will be:

While (condition)

 {

 Body of the loop;

 }

Or

Initialization;

While (condition)

{

 Body of the loop;

 Increment/decrement;

}

Object Programming With C#6.0 language

77

77

Example 1.

Write program in C# language to print out the numbers between (1...50)

by using While Statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication4

{

class Program

 {

static void Main(string[] args)

 {

int i;

i=1;

While (i<=50)

{

Console.WriteLine (i);

i = i + 1;

Console.ReadLine ();

 } } } }

Example 2.

Write program in C# language to print out the numbers between (50...1)

by using While Statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication4

{

Object Programming With C#6.0 language

78

78

class Program

 {

static void Main(string[] args)

 {

int i;

i=50;

While (i>=1)

{

Console.WriteLine (i);

I = I – 1 ;

Console.ReadLine ();

} } } }

Example 3.

Write program in C# language to find the summation of the even numbers

between (1...100) by using While Statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication4

{

class Program

 {

static void Main(string[] args)

 {

int i;

int sum=0;

i=1;

While (i>=100)

{

sum = sum + i;

Console.WriteLine (i);

Object Programming With C#6.0 language

79

79

i=i+2;

Console.ReadLine ();

 }

 }

}

}

Example 4.

Write program in C# language to reverse the digits of a given number

(123) and converting to (321) by using While Statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication3

{

class Program

 {

static void Main(string[] args)

 {

int i, num, rev = 0, r;

Console.WriteLine (" Enter Your Number");

 num = int.Parse(Console.ReadLine());

while (num > 0)

 {

 r = num % 10;

 rev = (rev * 10) + r;

 num = num / 10;

 }

Console.WriteLine ("Reverse of Digit = " + rev);

Console.ReadLine ();

 }

 }

}

Object Programming With C#6.0 language

80

80

Example 5.

Write program in C# language to check whether the given number is

palindrome or not? For example (121) is palindrome by using While

Statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication3

{

class Program

 {

static void Main(string[] args)

 {

int i, num, rev = 0, r, num1;

Console.WriteLine (" Enter Your Number");

 num = int.Parse(Console.ReadLine());

 num1 = num;

while (num > 0)

 {

 r = num % 10;

 rev = (rev * 10) + r;

 num = num / 10;

 }

Console.WriteLine ("num = " + num1);

Console.WriteLine ("rev = " + rev);

if (num1 == rev)

Console.WriteLine ("the number is palindrome");

else

Console.WriteLine ("the number is not palindrome");

Console.ReadLine ();

 }

Object Programming With C#6.0 language

81

81

 }

}

Example 6.

Write program in C# language to print the Binary Equivalent of given

integer value?

class demo

{

 public static void main(String [] args)

 {

 InputStreamReader in=new InputStreamReader (System.in);

 BufferedReader br=new BufferedReader (in);

 int bin[]=new int[50];

 int num , I , loc = 0 , r;

 Console.ReadLine ("Enter Number :");

 num = Int.Parse(Console.ReadLine());

 While (num > 0)

 {

 r=num%2;

 bin [loc]=r;

 num = num / 2;

 loc ++;

 }

 Console.WriteLine ("The Binary Equivalent is :");

 for (i=loc-1;i>=0;i--)

 {

 Console.WriteLine (bin[i]);

 }

 }

}

Object Programming With C#6.0 language

82

82

Example 7.

Write program in C# language to print the sum & average of digits of a

given number. For example?

123

Sum of digits = 6

Average of digits =2

By using While Statement?

Example 8.

Write program in C# language to print the largest digits of a given number.

For example.

Input: 56976.

Output: 9.

By using While Statement?Example 9.

Write program in C# language to check whether a given number is

Armstrong or not, for example.

153=1^3+5^3+3^3=153.

By using While Statement?

Break Statement.

It is using for terminating the flow of loop, it is always used along with the

decision making statements.

The general form for using this statement is shown in the following

example:

Object Programming With C#6.0 language

83

83

Class demo

{

 Public static void main (String [] args)

 {

 int i;

 for (i=1 ; i<=10 ; i++)

 {

 Console.writeLine (i);

 If (i==5)

 Break;

 }

 }

}

Example 1.

Write program in C# language to check whether a given number is prime

or not?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication4

{

class Program

 {

static void Main(string[] args)

 {

int i, num;

bool isprime = false;

Console.WriteLine (" Enter Your Number :");

 num = int.Parse(Console.ReadLine());

for (i = 2; i <= num - 1; i++)

 {

Object Programming With C#6.0 language

84

84

if (num % i != 0)

 isprime = true;

else

 {

 isprime = false ;

break;

 }

 }

if (isprime == true)

Console.WriteLine (" Number is Prime ");

else

Console.WriteLine (" Number is Not Prime");

Console.ReadLine ();

 }

 }

}

Example 2.

Write program in C# language to read three values & print the lcm of

these values. For example.

a ,b,c

m=a*b*c

Solution.

for I = 1 to m

 if (i %a == 0 and i % b == 0 and i %c == 0) then

 print i ;

 break ;

Object Programming With C#6.0 language

85

85

Continue Statement.

It is using for ignoring the sequence of loop.

The general form for using this statement is shown in the following

example:

class demo

{

 public static void main(String args[])

 {

 int i;

 for (I = 1 ; I <= 10 ; i++)

 {

 If (I >= 5 && I <= 8)

 continue;

 Console.WriteLine (i);

 }

 }

}

3- Do While Loop Statement.

It is an exit controlled loop, means it will execute at least one time either

condition is satisfied or not. The general form will be:

Do

{

 Body of the loop;

}

While (condition);

Example.

Write program in C# language to read two values from keyboard in every

time and character, add these two numbers together , if the user enters

Object Programming With C#6.0 language

86

86

(1) the program will be terminated and print out ("Program Terminate")

at the monitor screen?

Class demo

{

 Public static void main (String [] args)

 {

 Int a, b, c, ch;

 do

 {

Console.WriteLine ("Enter Two Number: ");

 a = int.Parse (Console.ReadLine ());

 b = int.Parse (Console.ReadLine ());

 c = a + b;

Console.WriteLine ("Sum: " + c);

Console.Write ("Press 1 for Continue Your program: ");

 Ch = int.Parse (Console.ReadLine ());

}

 While (ch == 1);

Console.WriteLine ("Program Terminate");

 }

}

Nesting of Loop Statement.

If loop statement contains one or more than one another loop statement

into its body then this term is known as nesting of loop statement.

Example 1.

Write program in C# language to print the multiply table from 2 to 10?

namespace ConsoleApplication4

{

class Program

 {

Object Programming With C#6.0 language

87

87

static void Main(string[] args)

 {

 Int i , j, res;

 For (i=2 ; i<=20 ; i++)

 {

 For (j=1; j<=10 ; j++)

 {

res=i * j ;

 Console.WriteLine (res + "\t");

 }

 Console.ReadLine ();

 }

} } }

Example 2.

Write program in C# language to print the list of prime numbers between

(1) to (100) by using for statement?

Class demo

{

 Static void Main (String [] args)

 {

 Int num i;

 Bool isprime=false;

 Console.Write ("Enter Number :");

 Num=int.parse (Console.ReadLine ());

 For (i=2;i<=num-1;i++)

 {

 If (num%i!=0)

 Isprime=true;

 Else

 {

 Isprime=false;

 Break;

Object Programming With C#6.0 language

88

88

 }

 }

 If (isprime==true)

 Console.WriteLine ("Given Number is Prime");

 Else

 Console.WriteLine ("Given Number is Not Prime");

} } }

Example 3.

Write program in C# language to print the list of Palindrome numbers

between (1) to (1000)?

Array.

It is a collection of memory location which stored in data and has the

same type and shares in a common name.

It is also known as subscripted variable.

It could be classified into two categories, they are:

A) Single Dimensional Array.

B) Double Dimensional Array.

a)

b)

c)

d) Single Dimensional Array.

It is a collection of memory location which stored in data and has the

same type and shares in a common name, this type in C# will contain a

single row with multiple columns.

The general form of define this type in C# will be as following.

Datatype [] arrayname = new datatype [size];

Object Programming With C#6.0 language

89

89

 For using this array in the body of program, it will be as following.

Array_name [array_index];

Example 1.

Write program in C# language to read 5 values using one dimensional

array & print them at screen?

class demo

{

 public static void main(String [] args)

 {

 int i ;

 int [] arr = new int[5];

Console.WriteLine ("Enter Five Values :");

for (i = 0 ; i < 5 ; i++)

{

 arr[i] = int.Parse(Console.ReadLine());

 }

 Console.WriteLine ("The Given Values are :");

 for (i = 0 ; i < 5 ; i++)

 {

 Console.WriteLine (arr[i]);

 }

 Console.ReadLine ();

 }

}

Example 2.

Write program in C# language to read 5 values using one dimensional

array & print out the reverse of this array at computer screen?

class demo

{

 public static void main(String [] args)

Object Programming With C#6.0 language

90

90

 {

 int i ;

 int [] arr = new int[5];

Console.WriteLine ("Enter Five Values :");

for (i = 0 ; i < 5 ; i++)

{

 arr[i] = int.Parse(Console.ReadLine());

 }

 Console.WriteLine ("The Given Values are :");

 for (i = 5 ; i > 0 ; i--)

 {

 Console.WriteLine (arr[i]);

 }

 Console.ReadLine ();

 }

}

Example 3.

Write program in C# language to read one dimensional array has [5]

elements & find the summation of these elements?

class demo

{

 public static void main(String [] args)

 {

 int I, sum=0 ;

 int [] arr = new int[5];

Console.WriteLine ("Enter Five Values :");

for (i = 0 ; i < 5 ; i++)

{

 arr[i] = int.Parse(Console.ReadLine());

 }

 Console.WriteLine ("The Given Values are :");

 for (i = 0 ; i < 5 ; i++)

 {

Object Programming With C#6.0 language

91

91

 Sum = sum + arr[i];

 }

 Console.WriteLine ("Sum=" + sum);

 Console.ReadLine ();

 }

}

Example 4.

Write program in C# language to search about specific element in one

dimensional array that has [10] elements?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication24

{

class Program

 {

static void Main(string[] args)

 {

int i,x;

int f =0;

int [] arr = new int[5];

Console.WriteLine ("Enter Five Values :");

for (i = 0; i < arr.Length; i++)

 {

 arr[i] = int.Parse(Console.ReadLine());

 }

Console.WriteLine ("Please Insert Search Value :");

x = int.Parse (Console.ReadLine ());

for (i = 0; i < arr.Length; i++)

 {

if (arr[i] == x)

Object Programming With C#6.0 language

92

92

 {

Console.WriteLine ("The value is exist");

 f = 1;

break;

 }

 }

if (f == 0)

Console.WriteLine ("The Value is not exist");

Console.ReadLine ();

 }

 }

}

Home Work 1.

Write program in C# language to print the largest element from an array

that has one dimensional array [10] elements?

Home Work 2.

Write program in C# to sort the elements of an array that has one

dimensional array [10] elements. (Selection Sort)?

Home Work 3.

Write program in C# language to count how many even & odd elements in

an array that has one dimensional array [10] elements?

Home Work 4.

Write program in C# language to print the prime elements from a one

dimensional array that has [10] elements?

Object Programming With C#6.0 language

93

93

e) Double Dimensional Array.

It is a collection of memory locations which stored in data and has the

same type, this type of array contains multiple rows with multiple

columns.

The general form of define this type of array will be.

Datatype [,] ArrayName =new DataType [rows, cols];

The general form of using this type in a body of program is.

Array_name [index of row, index of column];

Example1.

Write program in C# language to read 9 values for a matrix of [3*3] and

print out the elements in matrix form?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication5

{

class Program

 {

static void Main(string[] args)

 {

int[,] mat = new int[3,3];

int i, j;

Console.WriteLine (" Enter 9 Digit for the Matrix: ");

for (i = 0; i <= 2; i++)

 {

for (j = 0; j <= 2 ; j++)

 {

Object Programming With C#6.0 language

94

94

 mat [i , j] = int.Parse(Console.ReadLine());

 }

 }

Console.WriteLine (" The Matrix is: ");

for (i = 0; i <= 2; i++)

 {

for (j = 0; j <= 2 ; j++)

 {

Console. Write (mat [I , j] + "\t");

 }

Console.WriteLine ();

 }

Console.ReadLine ();

 } } }

Example 2.

Write program in C# language to read two dimensional array [3*3] and

print out the reverse matrix at computer screen?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication5

{

class Program

 {

static void Main(string[] args)

 {

int[,] mat = new int[3,3];

int i, j;

Console.WriteLine (" Enter 9 Digit for the Matrix: ");

for (i = 0; i <= 2; i++)

 {

for (j = 0; j <= 2 ; j++)

Object Programming With C#6.0 language

95

95

 {

 mat [i , j] = int.Parse(Console.ReadLine());

 }

 }

Console.WriteLine (" The Reverse Matrix is: ");

for (i = 2; i >= 0; i--)

 {
for (j = 2; j >= 0 ; j--)
 {

Console. Write (mat [I , j] + "\t");
 }

Console.WriteLine ();
 }

Console.ReadLine ();
 } } }

Example 3.

Write program in C# language to read two dimensional array [3*3] and

find the elements summation of this matrix?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication5

{

class Program

 {

static void Main(string[] args)

 {

int[,] mat = new int[3,3];

int i, j, sum=0;

Console.WriteLine (" Enter 9 Digit for the Matrix: ");

for (i = 0; i <= 2; i++)

 {

for (j = 0; j <= 2 ; j++)

Object Programming With C#6.0 language

96

96

 {

 mat [i , j] = int.Parse(Console.ReadLine());

 }

 }

for (i = 0; i <= 2; i++)

 {

for (j = 0; j <= 2 ; j++)

 {

Sum=sum + mat [i , j];
 }

}
Console. Write ("Sum=" + sum);
Console.ReadLine ();
 }
 }
}

Example 4.

Write program in C# language to add two matrixes, everyone has two

dimensional array [2, 2]?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication5

{

class Program

 {

static void Main(string[] args)

 {

int [,] x = new int[2, 2];

int [,] y = new int[2, 2];

int [,] z = new int[2, 2];

Int I , j;

Object Programming With C#6.0 language

97

97

Console.WriteLine (" Enter 4 Digit for the Matrix X : ");

for (i = 0; i <= 1; i++)

 {

for (j = 0; j <= 1; j++)

 {

 x [i , j] = int.Parse(Console.ReadLine());

 }

 }

Console.WriteLine (" Enter 4 Digit for the Matrix Y: ");

for (i = 0; i <= 1; i++)

 {

for (j = 0; j <= 1; j++)

 {

 y[I , j] = int.Parse(Console.ReadLine());

 }

 }

for (i = 0; i <= 1; i++)

 {

for (j = 0; j <= 1; j++)

 {

 z[i , j] = x[i , j] + y[i , j];

 }

 }

Console.WriteLine ("The Result of Adding Matrix is :");

for (i = 0; i <= 1; i++)

 {

for (j = 0; j <= 1; j++)

 {

Console .WriteLine (z [I , j]);

 }

 }

Console.ReadLine ();

 }

 }

 }

Object Programming With C#6.0 language

98

98

Example 5.

Write program in C# to transpose a matrix has two dimensional array [3,

3]?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication5

{

class Program

 {

static void Main(string[] args)

 {

int [,] mat = new int[3,3];

int i, j;

Console.WriteLine (" Enter 9 Digit for the Matrix: ");

for (i = 0; i <= 2; i++)

 {

for (j = 0; j <= 2 ; j++)

 {

 mat [i , j] = int.Parse(Console.ReadLine());

 }

 }

Console.WriteLine (" The Matrix is: ");

for (i = 0; i <= 2; i++)

 {

for (j = 0; j <= 2 ; j++)

 {

Console. Write (mat [i , j] + "\t");

 }

Console.WriteLine ();

 }

Object Programming With C#6.0 language

99

99

Console.WriteLine (" The Transpose Matrix is: ");

for (i = 0; i <= 2; i++)

 {

for (j = 0; j <= 2; j++)

 {

Console. Write (mat [j , I] + "\t");

 }

Console.WriteLine ();

 }

 }

 }

 }

Example 6.

Write program in C# language to add two matrixes, everyone has two

dimensional array [2, 2]?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication5

{

class Program

 {

static void Main(string[] args)

 {

int [,] x = new int[2, 2];

int [,] y = new int[2, 2];

int [,] z = new int[2, 2];

int I , j;

Console.WriteLine (" Enter 4 Digit for the Matrix X: ");

for (i = 0; i <= 1; i++)

Object Programming With C#6.0 language

100

100

 {

for (j = 0; j <= 1; j++)

 {

 x[i , j] = int.Parse(Console.ReadLine());

 }

 }

Console.WriteLine (" Enter 4 Digit for the Matrix Y: ");

for (i = 0; i <= 1; i++)

 {

for (j = 0; j <= 1; j++)

 {

 y[i , j] = int.Parse(Console.ReadLine());

 }

 }

for (i = 0; i <= 1; i++)

 {

for (j = 0; j <= 1; j++)

 {

 z[i , j] = x[i , j]+y[i , j];

 }

 }

Console.WriteLine ("The Result of Adding Matrix is :");

for (i = 0; i <= 1; i++)

 {

for (j = 0; j <= 1; j++)

 {

Console .WriteLine (z[i , j]);

 }

 }

Console.ReadLine ();

 }

 }

}

Object Programming With C#6.0 language

101

101

Structure in C#.

It is using to store a group of data which has different types in neighboring

memory location according to one name, so it is different from array, in

the array should have the same type, but the structure possible has a

different type.

To define the structure in C# language, we can use the following general

form.

Struct Structure_Name

{

 Public String var1;

Public int var2;

}

Example.

Struct students

 {

Public string name;

Public int age;

Public int mark;

 }

Note.

The definition of the structure always written out side of the main

function, it will be after (Class Program).

It is shown in the following example:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

Object Programming With C#6.0 language

102

102

namespace ConsoleApplication37

{

class Program

 {

Struct students

 {

Public string name;

Public int age;

public int mark;

 }

static void Main(string[] args)

 {

 }

 }

}

The second step is to create object for the defining structure, to use it for

reading and writing the structure data, and you should know that object

created will be inside the main function. The general form for creating

object is.

Structure_Name Object_Name = new Structure_Name ();

Example.

students s = new students();

To set value to any structure field, it will be as following.

Object_Name.Structure_field = Value;

Object Programming With C#6.0 language

103

103

Example.

s.name = "Wissam";

s.age = 36;

s.mark = int .Parse (Console.ReadLine ());

To print out the contains of structure fields at screen, it will as follows.

Console.WriteLine (Object_Name.Structure_Filed_Name);

Example.

Console.WriteLine (s.name);

Console.WriteLine (s.age);

Console.WriteLine (s.mark);

Example.

Write program in C# language to build structure for student information,

so it has on record (name, age, mark) fill this record by information then

print out at the screen?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication37

{

class Program

 {

struct students

 {

public string name;

public int age;

public int mark;

Object Programming With C#6.0 language

104

104

 }

static void Main(string[] args)

 {

students s = new students();

 s.name = "Wissam";

 s.age = 36;

 s.mark = 68;

Console.WriteLine ("the student information is :");

Console.WriteLine ("Full Name = " + s.name);

Console.WriteLine ("Age = " + s.age);

Console.WriteLine ("Mark = " + s.mark);

Console.ReadLine ();

 }

}

}

Example.

Write program in C# language to build structure for five students'

information, so it has on record (name, age, mark) fill this record by

information then print out at the screen?

List in C#.

It is a technique in which allows the programmer to store a several data

that have same type in neighboring memory locations, we can say it is

similar to array but it is a single dimensional array, so we can't represent

as a double dimensional array which using in game programming

applications and 3D, 4D dimensional applications.

List has some features, like:

1- Dynamic using.

2- We can easily add new elements to a list (this property not available in

array).

Object Programming With C#6.0 language

105

105

3- We can easily delete exist elements from a list (this property not

available in array).

Dealings with List in C#.

1. We can define any new list in C# language by using the following

general form.

List <Type> List_Name = New List <Type> ();

Example.

List <int> students = new List<int>();

2. We can add new element to the list by using the following general form.

List_Name.Add (Value);

Example.

students.Add (2);

Note.

The length of the list always start from (0) in C# language, and continuous

to infinity.

Note2.

We can fill array elements automatically by using (for) statement, it is

shown in the following example.

Object Programming With C#6.0 language

106

106

Example.

for (i=0; i<10;i++)

{

 students .Add (int.Parse (Console.ReadLine()));

}

3- List count.

If we want to know the number of the elements in a list, we can use the

command (count), it is shown in the following example:

Distination = List_Name.Count;

Example.

Console.WriteLine (students.Count);

4-Print list elements.

We can print out the elements of the list at screen by using for statement

or for each statement, it is shown in the following example:

Example.

Foreach (int n in students)

{

Console.WriteLine (n);

}

5- Remove Item from a list.

We can remove any item from a list by using either the element value or

by using the element index, the general form of removing any item from a

list in C# is.

Object Programming With C#6.0 language

107

107

A. Remove item from list by using item value.

List_Name.Remove (Value);

Example.

students.Remove (7);

B. Remove item from list by using index.

List_Name.RemoveAt (index of the value);

Example.

students.RemoveAt (3);

Example 1.

Write program in C# language to define a list has five elements, then fill

this array by elements print out these elements at screen, then remove

two elements from array one by value, and one by index, then print out

the final element list at screen?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication38

{

class Program

 {

static void Main(string[] args)

 {

Object Programming With C#6.0 language

108

108

List<int> students = newList<int>();

 students.Add (2);

 students.Add (32);

 students.Add (12);

 students.Add (7);

 students.Add (17);

Console.WriteLine ("The Elements of the List before Remove Items are :");

Foreach (int n in students)

 {

Console.WriteLine (n);

 }

Console.WriteLine ("before Remove Items are:" + students.Count);

 students.Remove (7);

 students.RemoveAt (3);

Console.WriteLine ("**");

Console.WriteLine ("The Elements of the List after Remove Items are :");

Foreach (int n in students)

 {

Console.WriteLine (n);

 }

Console.WriteLine ("after Remove Items are:" + students.Count);

Console.ReadLine ();

} } }

Example 2.

Write program in C# language to define list has (10) elements, then print

out the elements which greater than (10) at the computer screen?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

Object Programming With C#6.0 language

109

109

namespace ConsoleApplication38

{

class Program

 {

static void Main(string[] args)

 {

List<int> students = newList<int>();

 students.Add (2);

 students.Add (32);

 students.Add (12);

 students.Add (7);

 students.Add (17);

Console.WriteLine ("The Elements Which greater than 10 are :");

foreach (int n in students)

 {

if (n > 10)

Console.WriteLine (n);

 }

Console.ReadLine ();

 } } }

Example 3.

Write program in C# language to define list has (10) elements, fill this list

by value, print out the even value in this list at the computer screen?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication38

{

class Program

 {

Object Programming With C#6.0 language

110

110

static void Main(string[] args)

 {

List<int> students = new List<int>();

Console.WriteLine ("please Insert List Elements :");

int i;

for (i=0; i<10;i++)

 {

 students .Add (int.Parse (Console.ReadLine()));

 }

Console.WriteLine ("The Elements Which greater than 10 are :");

foreach (int n in students)

 {

if (n % 2 == 0)

Console.WriteLine (n);

 }

Console.ReadLine ();

} } }

Blocks in C#.

It is a division program into a set of parts each part contains a set of

commands that represent the code in order to carry out a specific

operation process, the benefits of this division process will lead to:

1-Ease of maintenance program.

2-Abbreviation for the program code, where I can use the same block in

multiple places in the program.

3-Ease of understanding of the program by other programmers.

4- Reducing of written code will lead to reduce the space needed by the

program from memory.

5-Ease to develop program.

Object Programming With C#6.0 language

111

111

The types of blocks in C#.

There are two types of blocks in C#, they are.

1- Procedure.

It is division program to a set of parts each part contains a set of

commands that represents the code, you should know that we can call

every procedure from any part of program as well as the procedure will be

received from the main program many parameters and manipulate a

specific job then it don't return any result to the main program.

To define any procedure in C# language, we can use the general form.

Access_modifiers void procedure_name (parametors)

{

Procedure_code;

}

So:

 Access_modifiers: represent the access method to the procedure, in

C# we have four types of the Access modifiers, they are:

1- Public type: in this type we can access to the procedure from any

part of program, i.e. Access is not restricted.

2- Private type: in this type we can access to the procedure from the

part which define procedure inside it.

3- Protected type: in this type the access is limited to the containing

procedure from a driven procedure only.

4- Static type: in this type the access will be static from any part of

program.

Object Programming With C#6.0 language

112

112

 Void: that means the procedure will not return any value to the

program.

 Procedure name: For representing the procedure name in the

program, we should follow the naming rules in the C# which we

explained it in the beginning of this book.

 Parameters: represent the variables that pass to the procedure, so we

can pass the parameters with their types as following:

Access_modifiers void procedure_name(parameter_type

parameter_name, …etc.)

Example.

Private static void addtwo (int a, int b)

{

Procedure body;

}

 To call this procedure from any part of program, we can use the following

formula.

Procedure_name ();

Example1.

Write program in C# language to build procedure which print out ("oop

with C#") at the computer screen?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

Object Programming With C#6.0 language

113

113

using System.Threading.Tasks;

namespace ConsoleApplication26

{

class Program

 {

static void Main(string[] args)

 {

 print ();

Console.ReadLine ();

 }

Private static void print ()

 {

Console.WriteLine ("oop with C#");

 }

 }

 }

Example2.

Write program in C# language to build procedure which calculate addition

two numbers (a, b) and put the result in (c) and write the result at the

computer screen?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication26

{

class Program

 {

static void Main(string[] args)

 {

int a = 5;

Object Programming With C#6.0 language

114

114

int b = 6;

 addtwo (a, b);

Console.ReadLine ();

 }

Private static void addtwo (int a , int b)

 {

int c = a + b;

Console.WriteLine(c);

 }

 }

 }

Example3.

Write program in C# language to build procedure which read two values (x

& y) and return the greater value from them?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication26

{

class Program

 {

static void Main(string[] args)

 {

int x, y;

Console.WriteLine ("Please insert two numbers :");

 x = int.Parse (Console.ReadLine ());

 y = int.Parse (Console.ReadLine ());

 max (x , y);

 Console.ReadLine ();

 }

Object Programming With C#6.0 language

115

115

private static void max (int x , int y)

 {

if (x > y)

Console.WriteLine ("the value of x is greater than y");

if (x< y)

Console.WriteLine ("the value of y is greater than x");

if (x == y)

Console.WriteLine ("the two values are equal");

 }

 }

 }

2- Function.

It is a division program to a set of parts each part contains a set of

commands that represents the code, you should know that we can call

every function from any part of program as well as the function will be

received from the main program many parameters and manipulate a

specific job then it will return a result to the main program.

To define any function in C# language, we can use the general formula.

Access_modifiers return_value_type function_name (parametors)

{

function_body;

Return (value);

}

So:

 Access_modifiers: represent the access method to the function, in C#

we have four types of the Access modifiers, they are:

Object Programming With C#6.0 language

116

116

1- Public type: in this type we can access to the function from any part

of program, e.i Access is not restricted.

2- Private type: in this type we can access to the function from the part

which define function inside it.

3- Protected type: in this type the access is limited to the containing

function from a driven function only.

4- Static type: in this type the access will be static from any part of

program.

 Return_value_type: it represents the type of the value that return

from the function to the main program.

 Function name: it represents the function name in the program; we

should follow the naming rules in the C# which we explained it in the

beginning of this book.

 Parametors: represents the variables that pass to the function, so we

can pass the parameters with their types as following:

 Access_modifiers void function_name(parameter_type

parameter_name, …etc.)

Example.

Private static int addtwo (int a, int b)

{

}

 To call this function from any part of program, we can use the following

formula.

 Distination_variable_name=function_name (parametors will pass to the

function);

Example 1.

Object Programming With C#6.0 language

117

117

Write program in C# language to read two values from keyboard, add

together and print out the result at the screen, by using function

technique?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication27

{

class Program

 {

static void Main(string[] args)

 {

int x;

int y;

int z;

Console.WriteLine ("please insert two values X & Y");

 x = int.Parse (Console.ReadLine ());

 y = int.Parse (Console.ReadLine ());

 z = addtwo(x, y);

Console.WriteLine ("z=" + z);

Console.ReadLine ();

 }

private static int addtwo(int x, int y)

 {

return (x + y);

 }

 }

}

Object Programming With C#6.0 language

118

118

Example 2.

Write program in C# language to read two values from keyboard (x & y)

and find the summation values between (x & y), then print out the result

at computer screen by using function technique?

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication28

{

class Program

 {

static void Main(string[] args)

 {

int x;

int y;

int z;

Console.WriteLine ("please insert two values X & Y");

 x = int.Parse (Console.ReadLine ());

 y = int.Parse (Console.ReadLine ());

 z = sum(x, y);

Console.WriteLine ("z=" + z);

Console.ReadLine ();

 }

private static int sum(int x, int y)

 {

int i,s=0;

for (i=x; i<=y ;i++)

 {

 s = s + i;

 }

return (s);

 }

Object Programming With C#6.0 language

119

119

 }

 }

Note.

The C# language allows us to call a specific function or procedure from

inside other function or procedure, it is shown in the following example.

Example.

Write program in C# language to read two values from keyboard and

multiply them, and then print out the result at the screen by using call

function from inside other function technique?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication28

{

class Program

 {

static void Main(string[] args)

 {

 read ();

Console.ReadLine ();

 }

private static void read()

 {

int x;

int y;

Console.WriteLine ("please insert two values X & Y");

 x = int.Parse (Console.ReadLine ());

 y = int.Parse (Console.ReadLine ());

Object Programming With C#6.0 language

120

120

 mult (x , y);

 }

private static void mult (int x, int y)

 {

int z;

 z = x * y;

 print (z);

 }

private static void print (int z)

 {

Console.WriteLine ("z=" + z);

 }

 }

 }

Note.

Note that the variables types and their numbers must to be compatible

between a headers of the function and call it, it is shown in the following

example.

Example.

{

Float x;

Sum (x);

}

Private static void (int x, int y)

{

.

.

}

In the above example, there are two errors, the first error is representing

in which we call the function with one parameter, it is (x) but when we

Object Programming With C#6.0 language

121

121

define the function we write in the header two parameters (x & y), this is

the first error.

The second one represents in which we call the function with one

parameter (x) and the type of (x) is float, but when we define function we

write in a header(x) and we define (x) as integer type, therefore the above

example is wrong because there is no compatible between the headers of

the function and call it.

Note 1.

In C# language there are many ready built in functions written by a

language designers, and we can directly use by the programmers, like.

Console.ReadLine ();

Console.WriteLine ();

Int.Parse ();

Note 2.

We can pass a string as parameters to the function or procedure; it is

shown in the following example.

Example.

We will pass string (str) to the procedure to print out at the screen with

("Helow") by the procedure?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication31

{

class Program

 {

static void Main(string[] args)

Object Programming With C#6.0 language

122

122

 {

string str;

 str = "Wissam Ali";

 show (str);

Console.ReadLine ();

 }

private static void show(string str)

 {

Console.WriteLine ("Helow" + str);

 }

 }

}

Passing parameter to the function.

There are three types of passing parameters to the function in C#

language, they are:

1- Passing parameter by value.

In this type we will send value to the function/procedure, so the actual

value of the parameter will not affect outside the function, but the value

which sent to the function/procedure (inside function) will affect.

It is shown in the following example:

Example.

In the following example, we will pass parameter to the function by value,

so we will use the parameter (x) in the main program and we will give

specific value, then we will send to the function formal parameter to the

function (x1) and we will print out the value of this parameter before,

through and after passing to see the effect.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

Object Programming With C#6.0 language

123

123

namespace ConsoleApplication32

{

class Program

 {

static void Main(string[] args)

 {

int x = 10;

Console.WriteLine ("the value before passing is: " + x);

 incr (x);

Console.WriteLine ("the value after passing is: " + x);

Console.ReadLine ();

 }

private static int incr(int x1)

 {

 x1 = x1 + 10;

Console.WriteLine ("the value throw passing is: " + x1);

Return (x1);

 }

 }

}

When we execute this program, the execution screen will be as following.

2- Passing parameters by reference.

Object Programming With C#6.0 language

124

124

In this type we will send a reference of the parameter to the

function/procedure, so the actual value of the parameter will affect inside

and outside the function, we can apply this technique by using the reserve

word (ref) before parameters in the call and header of the function.

It is shown in the following example:

Example.

We will apply the same previous example, but by using reference

technique, and we will see the results?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication32

{

class Program

 {

static void Main(string[] args)

 {

int x = 10;

Console.WriteLine ("the value before passing is: " + x);

 incr (ref x);

Console.WriteLine ("the value after passing is: " + x);

Console.ReadLine ();

 }

private static int incr(ref int x1)

 {

 x1 = x1 + 10;

Console.WriteLine ("the value throw passing is: " + x1);

return (x1);

 }

 }

}

Object Programming With C#6.0 language

125

125

3- Passing Parameter by the output.

It is similar to passing parameter by reference, but the difference between

them is in the first type we should give values to the parameters before

passing them to the function, but in the second type we should not give

values to the parameter before passing them to the function, to apply this

technique we will use the reserve word (out) before the parameters in the

call and header of the function.

Finally we should note that the actual value of the parameters will change

in the memory after execute function/procedure.

It is shown in the following example:

Example.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication32

{

class Program

Object Programming With C#6.0 language

126

126

 {

static void Main(string[] args)

 {

int x ;

 incr (out x);

Console.WriteLine ("the value after passing is: " + x);

Console.ReadLine ();

 }

private static int incr (out int x1)

 {

 x1 = 20;

 x1 = x1 + 10;

Console.WriteLine ("the value throw passing is: " + x1);

return (x1);

 }

 }

}

When we execute this program we will get as the following screen.

Passing Array to the Function.

We can pass one dimensional array or two dimensional arrays to the

function in C# language, it is shown in the following examples:

Example1.

Object Programming With C#6.0 language

127

127

Write program in C# language to read one dimensional array has [5]

elements, then passing this array to specific function to print out at

computer screen?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication34

{

class Program

 {

static void Main(string[] args)

 {

int i;

int[] arr = new int[5];

Console.WriteLine ("Enter Values of Five Elements :");

for (i=0;i<5;i++)

 {

 arr[i] = int.Parse (Console.ReadLine());

 }

 print (arr);

Console.ReadLine ();

 }

private static void print (int[] arr1)

 {

int i;

for (i = 0; i<5; i++)

{

 Console .WriteLine (arr1 [i]);

 }
 }
 }

}

Object Programming With C#6.0 language

128

128

Example2.

Write program in C# language to read two dimensional array has [2, 2]

elements, then passing this array to specific function to print out at

computer screen?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication34

{

class Program

 {

static void Main(string[] args)

 {

int i,j;

int [,] arr = new int[2,2];

Console.WriteLine ("Enter Values of Four Elements :");

for (i = 0; i < 2; i++)

 {

for (j=0;j<2;j++)

 {

 arr[i , j] = int.Parse(Console.ReadLine());

 }

 }

 print(arr);

Console.ReadLine ();

}

private static void print(int [,] arr1)

 {

int i,j;

for (i= 0;i<2;i++)

 {

Object Programming With C#6.0 language

129

129

for (j=0;j<2;j++)

 {

Console.WriteLine (arr1 [i , j]);

 }

 }

 }

 }

}

Example3.

Write program in C# to read two arrays everyone has two dimensional

array [2, 2], then add these arrays together and print out at the screen by

using functional technique?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication34

{

class Program

 {

static void Main(string[] args)

 {

int i,j;

int [,] a = new int[2,2];

int [,] b = new int[2, 2];

Console.WriteLine ("Enter Values of array A :");

for (i = 0; i < 2; i++)

 {

for (j=0;j<2;j++)

 {

 a[i , j] = int.Parse(Console.ReadLine());

Object Programming With C#6.0 language

130

130

 }

 }

Console.WriteLine ("Enter Values of array B :");

for (i = 0; i < 2; i++)

 {

for (j = 0; j < 2; j++)

 {

 b[i , j] = int.Parse(Console.ReadLine());

 }

 }

 print (a,b);

Console.ReadLine ();

 }

private static void print(int [,] a, int [,] b)

 {

int i,j;

int [,] c = new int[2, 2];

for (i = 0; i < 2; i++)

 {

for (j = 0; j < 2; j++)

 {

 c[i , j]=a[i , j]+b[i , j];

 }

 }

Console.WriteLine ("The Result of Adding these arraye are :");

for (i= 0;i<2;i++)

 {

for (j=0;j<2;j++)

 {

Console.WriteLine(c [i , j]);

 }

 }

 }

Object Programming With C#6.0 language

131

131

 }

}

Example4.

Write program in C# to read two arrays everyone has one dimensional

array [5], elements, then add these arrays together and print out at the

screen by using functional technique?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication34

{

class Program

 {

static void Main(string[] args)

 {

int i;

int[] a = new int[5];

int[] b = new int[5];

Console.WriteLine ("Enter Values of array A :");

for (i = 0; i < 5; i++)

 {

 a[i] = int.Parse(Console.ReadLine());

 }

Console.WriteLine ("Enter Values of array B :");

for (i = 0; i < 5; i++)

 {

 b[i] = int.Parse(Console.ReadLine());

 }

 print(a,b);

Console.ReadLine ();

Object Programming With C#6.0 language

132

132

 }

private static void print(int[] a, int[] b)

 {

int i;

int[] c = new int[5];

for (i = 0; i < 5; i++)

 {

 c[i]=a[i]+b[i];

 }

Console.WriteLine ("The Result of Adding these arraye are :");

for (i= 0;i<5;i++)

 {

Console.WriteLine(c[i]);

 }

}

}

}

Recursive Function.

It is a function that call itself by itself, it is shown in the following example.

Example.

Write program in C# language to find factorial of any given number by

using recursive function technology?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication36

{

class Program

 {

static void Main(string[] args)

Object Programming With C#6.0 language

133

133

 {

int n,res;

Console.WriteLine ("Please Insert the Number of Factorial :");

 n = int.Parse (Console.ReadLine ());

 res= fact(n);

Console.WriteLine ("The Result of the Factorial Number is:" + res);

Console.ReadLine ();

 }

private static int fact(int n)

 {

int f;

if (n == 1)

return (1);

 f = fact (n - 1) * n;

return (f);

 }

 }

}

Example2.

Write program in C# language to find (Xn) by using recursive function

technology?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication36

{

class Program

 {

Object Programming With C#6.0 language

134

134

static void Main(string[] args)

 {

int x,n,res;

Console.WriteLine ("Please Insert the Number of X :");

 x = int.Parse (Console.ReadLine ());

Console.WriteLine ("Please Insert the Number of N :");

 n = int.Parse (Console.ReadLine ());

 res = power(x,n);

Console.WriteLine ("The Result of the Power is:" + res);

Console.ReadLine ();

 }

private static int power(int x, int n)

 {

int p;

if (n == 0)

return (1);

 p = x * power(x, n - 1);

return (p);

 }

 }

}

Object Programming With C#6.0 language

135

135

Chapter 3
Object Oriented

Programming

Object Programming With C#6.0 language

136

136

Object Programming With C#6.0 language

137

137

Object Oriented Programming (OOP) with C#.

It is an advanced programming paradigm, in which the program is division

into units called objects, each object is a package of data, variables,

constants, functions and organization units and interfaces to use.

The program is built by using the objects and linking them with each other

and the external interface program is using the program structure and

interfaces to use for each object.

Object-oriented programming is a new way to design and write software,

the main idea in which you convert the program into different parts and

each part represents a goal or a specific job.

The oop technique consist of two concepts, they are:

1- Object.

2- Class.

Object.

Perhaps all that we see in our daily life of humans, animals and fruit ... etc.

It is an object, if we look at the category of animals, for example, lion ,

tiger , deer and rabbit each representing an independent creature itself,

and has the characteristics that distinguish it from the other, and the

behaviors and functions.

Object Programming With C#6.0 language

138

138

So each object is characterized by the properties and behaviors performed

by these behaviors and produce events, and these three factors, each

object is characterized by what others:

1- properties: they are called in programming language (Data).

2-behavior: they are functions performed by the object and called in

programming language (Method or Functions).

3- Actions: they are performance that result from the behavior of the

object is called in programming language (Events).

Class.

Each object belongs to a class higher than that ,for example, orange is an

object which belongs to the category of fruit, the lion is an object belongs

to the category of animals, car , plane and ship are objects which belong

to the category of transportation.

All the programs that written in C language are collection of (functions)

that work together, either in relation to the language of C# programs, it is

a set of classes, whether they made the programmer (User define classes)

or classes ready in the language (Built in classes).

These classes contain inside a set of functions that are called (Method)

and variables reservation data also contain a set of events.

And known these three (functions - variables - events) as Members.

Transportation (Class)

Car (Object) Plane(Object) Ship (Object)

Object Programming With C#6.0 language

139

139

Object Life Cycle.

The following figure is shown the object life cycle.

Create Class in C# Language.

We can create class in C# language by using the reserve word (Class) and

using the following Structure.

Class class_name

{

// define variables (fields)

Var1;

Var2,

…..

Var n;

// Define Methods

Public void method1_name (parameters)

{

Method_code;

}

Object Programming With C#6.0 language

140

140

Public void method2_name (parameters)

{

Method_code;

}

…..

}

Example.

 class human

 {

 mind,hands,legs,eyes..........; }Attributes

 thinking ()

 working () => Behaviors

 walking ()

 vision ()

 }

 human frah, zaid, ali

Create object.

To use the definition class in program we should define object which using

to call the member function in definition class, the general form to create

object is:

Class_Name object_Name = new Class_Name ();

Object Programming With C#6.0 language

141

141

Example.

Car mycar = new car ();

Call member functions.

To call the member functions founded within class, we should use the

created object, and the general form to call functions is.

Object_Name.Membrer_Function_Name (Parameters);

Example.

mycar.initilize (n, c, m);

Example.

In the following example we will built class for specific car have the fields

(name, color, model). As well as it has two methods, the first method calls

(Initialize) to set values to these fields, and other is (Show) to print these

features at monitor screen?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication40

{

classcar

 {

string name;

string color;

Object Programming With C#6.0 language

142

142

string model;

public void initialize (string n, string c, string m)

 {

 name = n;

 color = c;

 model = m;

 }

public void show ()

 {

Console.WriteLine ("Name: " + name);

Console.WriteLine ("Color: " + color);

Console.WriteLine ("Model: " + model);

 }

 }

class Program

 {

static void Main(string[] args)

 {

car mycar = new car();

 mycar.initialize ("Kia", "Red", "2017");

 mycar.show ();

Console.ReadLine ();

 }

 }

}

Note.

We can create more than one object in the program, and using these

objects to call member functions.

It is show in the following example:

Object Programming With C#6.0 language

143

143

Example.

We will rewrite the previous example to create three objects for three

cars.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication40

{

classcar

 {

string name;

string color;

string model;

public void initialize (string n, string c, string m)

 {

 name = n;

 color = c;

 model = m;

 }

public void show ()

 {

Console.WriteLine ("Name: " + name);

Console.WriteLine ("Color: " + color);

Console.WriteLine ("Model: " + model);

 }

 }

class Program

 {

static void Main(string[] args)

Object Programming With C#6.0 language

144

144

 {

car mycar1 = new car();

mycar1.initialize ("Kia", "Red", "2017");

Console.WriteLine ("The Feature of The First Car is :");

mycar1.show ();

car mycar2 = new car();

mycar2.initialize ("BMW", "White", "2015");

Console.WriteLine ("The Feature of The Second Car is :");

mycar2.show ();

car mycar3 = new car();

mycar3.initialize ("Mercedes", "Blue", "2013");

Console.WriteLine ("The Feature of The Third Car is :");

mycar3.show ();

Console.ReadLine ();

 }

 }

}

Access Modifier.

It is a declaration operation for the variables, Functions, Classes, Methods

and objects.

This technology will specify of the element visibility within program and

how we can access to it, in C# language there are four types of elements

access modifiers, they are.

1- Normal Access Modifier.

In this type, the elements definition will be visible only within the part

which belongs to it, for example.

Object Programming With C#6.0 language

145

145

Example.

class Program

 {

static void Main(string[] args)

 {

int x;

string name;

 }

 }

In the above example, the variables (x & name) will be visible only within

the class (program) which defines in it, and we cannot use them in other

class.

2- Public Access Modifier.

In this type, the elements definition will be visible by all classes follow to

the program but we should note that these variables must define at class

level (not Member level), it is show in the following example:

Example.

class Program

 {

public int x;

public string name;

static void Main(string[] args)

 {

 }

 }

66

Object Programming With C#6.0 language

146

146

3- Private Access Modifier.

In this type the elements definition will be visible only in the class define

within it, it is similar to first type but the difference between them is that

this type will define at class level only (similar to public) but in the first

type we can define it in both kinds (class level & method level),

for example:

Example.

class Program

 {

Private int z;

private int x;

private string name;

static void Main(string[] args)

 {

 }

 }

}

4- Protected Access Modifier.

In this type the elements definition will be visible within the class which

defines in it, and within the class which inherits from definition class, it is

only defined at class level too. For example:

Example.

class Program {

protected int z;

protected int x;

protected string name;

static void Main(string[] args)

 {

Object Programming With C#6.0 language

147

147

 }

 }

}

Methods Types.

In C# language a user defined methods and we can classify them into four

categories, they are:

1. Method with no arguments & not return values.

2. Method with arguments but not return values.

3. Method with arguments and return values.

4. Method with not arguments but return values.

1. Method with no arguments & not return values.

In this type we don't send any parameters to the method and in the

same time we don't receive any results from this method, for example

for this type messages printing method.

It is shown in the following example:

Example.

Write program in C# language to generate the following output?

Baghdad University

Solution:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

Object Programming With C#6.0 language

148

148

using System.Threading.Tasks;

namespace ConsoleApplication43

{

Class logic

 {

public void line()

 {

int i;

for (i = 1; i <= 70; i++)

 {

Console. Write ("*");

 }

Console.WriteLine ();

 }

 }

class Program

 {

static void Main(string[] args)

 {

logic obj = new logic();

 obj.line ();

Console.WriteLine ("\t\t\t Baghdad University");

 obj.line ();

 obj.line();

Console.ReadLine ();

 }

 }

}

Object Programming With C#6.0 language

149

149

2. Method with arguments but not return values.

If you want to perform any dynamic operation according to given value,

but the occurrence of result is more than one, i.e. in this type we will

send arguments to the method but when it finishes its work it will not

return any results to main program.

 It is shown in the following example:

Example.

1. Write program in C# language to generate the following output, by using

Method with arguments but not return values technology?

Baghdad University

&&&

^^^

Solution:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication43

{

class logic

 {

public void line(string ch)

 {

int i;

for (i = 1; i <= 70; i++)

Object Programming With C#6.0 language

150

150

 {

Console. Write (ch);

 }

Console.WriteLine ();

 }

 }

class Program

 {

static void Main(string[] args)

 {

logic obj = new logic();

 obj.line ("*");

Console.WriteLine ("\t\t\t Baghdad University");

 obj.line ("&");

 obj.line ("^");

Console.ReadLine ();

 }

 }

}

Home Work.

Write program in C# language to create a Method named as table () which

contains a number as argument & print the table of given number, by

using Method with arguments but not return values technology?

2. Method with arguments and return values.

If we want to perform any dynamic operation by a given value & result is

an aggregate value, i.e. in this type we will send parameters to the

method and in the same time we will return results to the main program

or other method in program.

It is shown in the following example:

Object Programming With C#6.0 language

151

151

Example.

Write program in C# language to create method named max () which

contains three numbers as arguments & return the largest one, by using

Method with arguments and return values technology?

Solution.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication43

{

class logic

 {

public int max(int a, int b, int c)

 {

int m;

if (a > b && a > c)

 m = a;

else if (b > a && b > c)

 m = b;

else

 m = c;

return m;

 }

}

class Program

 {

static void Main(string[] args)

 {

logic obj = new logic();

int res = obj.max(100, 20, 4);

Console .WriteLine ("Largest: " + res);

Object Programming With C#6.0 language

152

152

Console.ReadLine ();

 }

 }

}

Example 2.

Write program in C# language to create method named fact () which

contains a number as argument & return the factorial of that number, by

using Method with arguments and return values technology?

Example 3.

Create method named as power () which contains base number(x) and

power number (n) as argument & return x to the power n, by using

Method with arguments and return values technology?

3. Method with no argument but return value.

In this type we will not pass any parameters to the method, and in the

same time we will receive results after the method finished its work, it is

shown in the following example.

Example.

Rewrite the previous example by using the method with no argument but

return value, by using Method with no arguments but return values

technology?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

Object Programming With C#6.0 language

153

153

namespace ConsoleApplication43

{

class logic

 {

 int a, b, c;

public void get(int x, int y, int z)

 {

 a = x;

 b = y;

 c = z;

 }

public int max()

 {

int m;

if (a > b && a > c)

 m = a;

else if (b > a && b > c)

 m = b;

else

 m = c;

return m;

 }

public void show()

 {

Console .WriteLine ("Largest: " + max ());

 }

}

class Program

 {

static void Main(string[] args)

 {

logic obj = new logic();

 obj.get (100, 20, 4);

 obj.show ();

Object Programming With C#6.0 language

154

154

Console.ReadLine ();

 }

 }

}

Constructors Methods.

It is a method which writes to do specific job, it has the same name of

class and it doesn't return any value to main program.

It is using to initialize a values to the variables, we can summarize the

characteristics in the following points.

1. The name of constructor method must be same as the name of class.

2. They don't return any value to the main program.

3. They called automatically when the object of the class is created.

Types of Constructors Methods.

 1. Default Constructors Methods.

 2. Parameterized Constructors Methods.

 3. Overloaded Constructors Methods.

1. Default Constructors Methods.

If a constructors Method don't contain any argument then it is known as

default constructors Methods.

It is shown in the following example:

Object Programming With C#6.0 language

155

155

Example.

In the following example we will define to arguments (name & age) we

will give values to these arguments, by using default constructor method?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication43

{

Class cons

 {

String name;

int age;

public cons()

 {

 name = "Wissam";

 age = 36;

 }

public void show()

 {

Console.WriteLine ("Name: " + name);

Console.WriteLine ("Age: " + age);

}

 }

class Program

 {

static void Main(string[] args)

 {

cons obj = new cons();

obj.show ();

Console.Read ();

Object Programming With C#6.0 language

156

156

}

 }

}

2. Parameterized Constructors Methods.

The constructors Methods which take the arguments are known as

parameterized constructors Methods.

The values of arguments must be passed at the time of object creation.

It is shown in the following example:

Example.

In the following example we will define to arguments (name & age) we

will give values to these arguments, by using Parameterized constructor

method?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication43

{

Class cons

 {

String name;

int age;

public cons(string n , int a)

 {

 name = n;

 age = a;

 }

Object Programming With C#6.0 language

157

157

public void show()

 {

Console.WriteLine ("Name: " + name);

Console.WriteLine ("Age: " + age);

 }

 }

class Program

 {

static void Main(string[] args)

 {

cons obj = new cons("Wissam Ali", 36);

 obj.show ();

Console.Read ();

 } } }

3. Overloaded Constructors.

If a class contains more than one constructor then this term is known as

overloaded constructor. For example:

Example.

Write program in C# language to print out the following figure at the

monitor screen?

Object Programming With C#6.0 language

158

158

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication43

{

Class cons

{

Class Line

{

int i;

public Line()

 {

for (i = 1; i <= 70; i++)

 {

Console. Write ("*");

 }

Console.WriteLine ();

 }

public Line(char ch)

 {

for (i = 1; i <= 70; i++)

 {

Console. Write (ch);

 }

Console.WriteLine ();

 }

 }

class Program

{

static void Main(string[] args)

 {

Line i;

Object Programming With C#6.0 language

159

159

Console.WriteLine ("First Line Style");

i = new Line ();

Console.WriteLine ("Second Line Style");

i= new Line ('&');

Console.Read ();

 }

 }

 }

}

OOP characteristics (Concepts).

There are four characteristics for the object oriented programming

language, we will discuss everyone in below.

1) Inheritance.

It is a basic concept of the oop, we can explain this concept briefly through

saying it is a derivation operation of the found class characteristic

(methods & variables) in program to new class created by programmer, so

the basic class will call the main class or parent class, and new class will

call derived class or child class.

The purpose of using this technique is to abbreviation code written by

programmer and doesn't need to rewrite the common codes between the

derivation classes.

If we want to derive new class from exist class in C# language, we will use

the following form.

Class derived_class_name: base_class_name

{

 Body of the class;

}

Object Programming With C#6.0 language

160

160

Note.

Remember that only public members of base class inherited in derived

class.

Example.

The following example shows the general form of deriving of child class

from parent class, such that we will derive child class called ("sec") from

base class called ("first")?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication43

{

Class first

 {

public void one()

 {

Console.WriteLine ("Function of Base Class");

 }

 }

Class sec : first

 {

public void two()

 {

Console.WriteLine ("Function of Derived Class");

 }

 }

class Program

 {

static void Main(string[] args)

 {

Object Programming With C#6.0 language

161

161

sec obj = new sec();

 obj.one ();

 obj.two ();

Console.Read ();

 }

 }

}

Types of Inheritance.

In C# language we have four types of inheritance, they are.

A. Single Level Inheritance.

In this type we will inherit the characteristics (Methods & variables) of

specific class to other class, for example if we have Class A and we want

to inherit its characteristic to new class named class B, then this

operation will be single level inherits, so the class A will call parent class

and class B will call child class, it is shown in the following figure:

Example.

The following example shows the derivation of the above figure, such that

in the following code we will inherits class called child from other class

called parent.

Public Class parent

 {

Statement1

.

 Class A (Parent Class)

Class B (Child Class)

Object Programming With C#6.0 language

162

162

.

Statement n

 }

Public Class child: Inherits parent

{

Statement1

.

.

Statement n

}

Example.

Write program in C# to apply the derivation of the following figure?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

Class Person.
Fields:
 Name.
 Age.
 Address.

Class Programmer.
Fields:
 Name.
 Age.
 Address.
Derive form Class Person

 Job : Programmer.

Object Programming With C#6.0 language

163

163

namespace ConsoleApplication44

{

Public class person

{

public string name;

public int age;

public string address;

public void set1 (string n, int a, string add)

 {

 name = n;

 age = a;

 address = add;

 }

 }

class Programmer : person

 {

public string job;

public void set2 (string j)

 {

 job = j;

 }

public void show()

 {

Console.WriteLine ("Name = " + name);

Console.WriteLine ("Age = " + age);

Console.WriteLine ("Address = " + address);

Console.WriteLine ("job = " + job);

 }

 }

class Program

 {

static void Main(string[] args)

 {

programmer call = new programmer ();

 call .set1("Ali", 35, "Baghdad");

Object Programming With C#6.0 language

164

164

 call.set2 ("programmer");

 call.show ();

Console.ReadLine ();

 }

 }

}

B. Multi-Level Inheritance.

It is a derivation operation of characteristics and features of specific class

to other class (new class) in program, then the new class will inherit its

features to other class, for example if we have class A and give its

features to new class names class B, then create new class names class C

and give its the features of class B, in that case this type of derivation will

call Multi Level Inheritance.

It is shown in the following figure:

Class A (Parent Class)

Class B (Child Class for Class A)

(Parent Class for Class C)

Class C (Child Class for Class B)

Object Programming With C#6.0 language

165

165

Example.

The following example will show the inheritance of above figure, such that

in the following code we will inherits class call father from other class call

grand_father, and in the same time we will derive class call child from

base class called father.

Public Class grand_father

{

Statement1

.

.

Statement n

}

Public Class father: Inherits grand_father

{

Statement1

.

.

Statement n

}

Public Class child: Inherits father

{

Statement1

.

.

Statement n

End Class

}

Object Programming With C#6.0 language

166

166

Example.

Write program in C# language to apply the following figure derivation?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication44

{

Public class person

 {

public string name;

Class Person.
Fields:
Name.
Age.
Address.

Class Programmer.
Fields:
Name.
Age.
Address.
Derive form Class Person

 Job : Programmer.

Class Programmer_specilist.
Fields:
Name.
Age.
Address.
Job: Programmer.

Derive form Class Programmer

Programming_Language: C# Language

Object Programming With C#6.0 language

167

167

public int age;

public string address;

public void set1 (string n, int a, string add)

 {

 name = n;

 age = a;

 address = add;

 }

 }

class Programmer : person

 {

public string job;

public void set2 (string j)

 {

 job = j;

 }

 }

class Programmer_specilist : programmer

 {

public string programming_language;

public void set3(string pr_ln)

 {

 programming_language = pr_ln;

 }

public void show()

 {

Console.WriteLine ("Name = " + name);

Console.WriteLine ("Age = " + age);

Console.WriteLine ("Address = " + address);

Console.WriteLine ("job = " + job);

Console.WriteLine ("Programming Language = " +

programming_language);

 }

 }

Class Program

Object Programming With C#6.0 language

168

168

 {

static void Main(string[] args)

 {

programmer_specilist call = newprogrammer_specilist ();

 call .set1("Ali", 35, "Baghdad");

 call.set2 ("programmer");

 call.set3 ("C# Language");

 call.show ();

Console.ReadLine ();

 }

 }

}

C. Multiple Inherits.

It is a derivation operation of characteristics and features of specific class

to more class, suppose we have class named (A) and we want to give its

characteristics to two new classes, the first class named (B) and the

second class named (C), this technique will be Multiple Inherits type.

So the class (A) will be call parent class, the Class (B) &(C) will be call child

class. It is shown in the following figure.

Class A (Parent Class)

Class B (Child Class for

Class A)

Class C (Child Class for

Class A)

Object Programming With C#6.0 language

169

169

Example.

The following example will show the inheritance of above figure, such that

in the following code we will inherits class call child1 from other class call

father, and in the same time we will derive class call child2 from base class

called father.

Public Class father

{

Statement1

.

.

Statement n

}

Public Class Child1: Inherits father

{

Statement1

.

.

Statement n

}

Public Class child2: Inherits father

{

Statement1

.

.

Statement n

}

Object Programming With C#6.0 language

170

170

Example.

Write program in C# language to apply the following inheritance?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication44

{

Public class person

 {

public string name;

public int age;

public string address;

public void set1 (string n, int a, string add)

 {

 name = n;

Class Person.
Fields:
 Name.
 Age.
 Address.

Class
Programmer.
Fields:
 Name.
 Age.
 Address.
Derive form Class

Person

Class Doctor.
Fields:
 Name.
 Age.
 Address.
Derive form Class

Person.

 Job: Doctor.

Object Programming With C#6.0 language

171

171

 age = a;

 address = add;

 }

 }

class Programmer : person

 {

public string job;

public void set2 (string j)

 {

 job = j;

 }

public void show()

 {

Console.WriteLine ("Name = " + name);

Console.WriteLine ("Age = " + age);

Console.WriteLine ("Address = " + address);

Console.WriteLine ("job = " + job);

 }

 }

Class doctor : person

 {

public string job2;

public void set3(string j2)

 {

 job2 = j2;

 }

public void show()

 {

Console.WriteLine ("Name = " + name);

Console.WriteLine ("Age = " + age);

Console.WriteLine ("Address = " + address);

Console.WriteLine ("job = " + job2);

 }

 }

Object Programming With C#6.0 language

172

172

class Program

 {

static void Main(string[] args)

 {

programmer call1 = new programmer ();

doctor call2 = new doctor();

 call1 .set1 ("Ali", 35, "Baghdad");

 call1.set2 ("programmer");

 call1.show ();

 call2.set1 ("Ahmed", 40, "kerbalaa");

 call2.set3 ("doctor");

 call2.show ();

Console.ReadLine ();

 }

 }

}

D. Hybrid Inheritance.

It is a mix of previous types, so when we combine two types of

inheritance in one type it will be called hybrid inheritance as, it is shown

in the following figure:

Class A (Parent Class)

Class B (Child Class for

Class A)

Class C (Child Class for

Class A)

Class D (Child Class for

Class B)

Object Programming With C#6.0 language

173

173

 In the above figure we

have a basic class called class A and we can name grandfather class, this

class will inherit its features to all other classes founded under it, and

there is two classes class (B& class C) are derived from class A, this

derivation will be of Multiple derivation.

In the above figure there is another derivation, it is derivation of class D

from class B, this type will be as single level derivation.

Note that class D will take the features of class A& the features of class B.

i.e. this derivation will be as hybrid derivation, it consists of single level

derivation and multiple derivation.

The general structure form of this type is shown in the following example:

Example.

The following example will show the inheritance of above figure, such that

in the following code we will inherits class call B from the base class call A,

and in the same time we will derive class call C from base class called A,

and we will derive class call D from base class called B .

Public Class class A

 {

Statement1

.

.

Statement n

}

Public Class Class B:Inherits Class A

 {

Statement1

.

.

Statement n

Object Programming With C#6.0 language

174

174

}

Public Class Class C:Inherits Class A

 {

Statement1

.

.

Statement n

 }

Public Class Class D : Inherits Class B

 {

Statement1

.

.

State mment n

}

Object Programming With C#6.0 language

175

175

Example.

Write program in C# language to apply the inheritance shown in the

following figure?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

Class
Person.
Fields:
 Name.
 Age.
 Address.

Class Programmer.
Fields:
 Name.
 Age.
 Address.
Derive form Class Person

 Job : Programmer.

Class Doctor.
Fields:
 Name.
 Age.
 Address.
Derive form Class

Person.

 Job: Doctor.

Class
Programmer_specili
st.
Fields:
 Name.
 Age.
 Address.
 Job: Programmer.

Derive form Class

Object Programming With C#6.0 language

176

176

using System.Threading.Tasks;

namespace ConsoleApplication44

{

Public class person

 {

public string name;

public int age;

public string address;

public void set1 (string n, int a, string add)

 {

 name = n;

 age = a;

 address = add;

 }

 }

class Programmer : person

 {

public string job;

public void set2 (string j)

 {

 job = j;

 }

 }

class Programmer_specilist : programmer

 {

public string programming_language;

public void set3(string pr_ln)

 {

 programming_language = pr_ln;

 }

public void show()

 {

Console.WriteLine ("Name = " + name);

Console.WriteLine ("Age = " + age);

Object Programming With C#6.0 language

177

177

Console.WriteLine ("Address = " + address);

Console.WriteLine ("job = " + job);

Console.WriteLine ("Programming Language = " +

programming_language);

 }

 }

Class doctor : person

 {

public string job2;

public void set4(string j2)

 {

 job2 = j2;

 }

public void show()

 {

Console.WriteLine ("Name = " + name);

Console.WriteLine ("Age = " + age);

Console.WriteLine ("Address = " + address);

Console.WriteLine ("job = " + job2);

 }

 }

class Program

 {

static void Main(string[] args)

 {

programmer_specilist call1 = newprogrammer_specilist ();

doctor call2 = new doctor();

 call1 .set1 ("Ali", 35, "Baghdad");

 call1.set2 ("programmer");

 call1.set3 ("C# Language");

 call1.show ();

 call2.set1 ("Ahmed", 40, "kerbalaa");

 call2.set4 ("doctor");

 call2.show ();

Object Programming With C#6.0 language

178

178

Console.ReadLine ();

 }

 }

}

Note 1.

We can set classes' un inheritance in C# language by using the keyword

(sealed) before the name of class in declaration part, it is shown in the

following example:

Sealed class Class_Name

{

 Class_Body;

}

Note 2.

The purpose of set class un inheritance is to keep at class elements (data

& methods) from external using. This reduces errors resulting from the

misuse of data.

Example.

Sealed class person

 {

public int id;

public string name;

public void set1 (int x, string n)

 {

 id = x;

 name = n;

 }

 }

class Program mer : person

Object Programming With C#6.0 language

179

179

Note 3.

You should know that we can create objects for the sealed classes in the

main program.

2- Abstract& interface Classes.

It is a representation of specific type (Class) that to be unreal

representation, It is known that the abstract classes in object-oriented

programming do not allow them to reproduce objects and remain limited

in its role in the process of defining the basic elements of the classes in

order to inherit to the derived classes, i.e. (the abstract classes is classes

which can't copy elements from it).

Abstract category can include functions abstract rechargeable definition at

the level of derived classes, also can not include any function abstract,

abstract and jobs are jobs that do not contain any software orders, they

only display function definition.

Create abstract class.

To create abstract class in C# language we will use the key word (abstract),

the general form to create abstract class is.

Abstract class Class_Name

{

 Body of class;

}

Example.

Abstract class person

 {

public int id;

public string name;

public void initialize(int x, string n)

Object Programming With C#6.0 language

180

180

 {

 id = x;

 name = n;

 }

 }

Note.

You should know we can't create objects from this class in the main

program, for example.

class Program

 {

static void Main(string[] args)

 {

person obj = new person();

 }

 }

To deal with this type of class, we should derive its features from other

class and treat with derived class; it is shown in the following example.

Example.

Write program in C# to create new class which have information of

programmer (id, name, and specialty) and print out this information at

screen by using Abstract Class technology?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

Object Programming With C#6.0 language

181

181

namespace ConsoleApplication45

{

Abstract class person

 {

public int id;

public string name;

public void set1 (int x, string n)

 {

 id = x;

 name = n;

 }

 }

class Programmer : person

 {

public string specility;

public void set2 (string sp)

 {

 specility = sp;

 }

public void show()

 {

Console.WriteLine ("id = " + id);

Console.WriteLine ("Name = " + name);

Console.WriteLine ("specialty = " + specility);

 }

 }

class Program

 {

static void Main(string[] args)

 {

programmer obj = newprogrammer ();

 obj.set1 (1, "Ali");

 obj.set2 ("Visual Basic");

 obj.show ();

Console.ReadLine ();

Object Programming With C#6.0 language

182

182

 }

 }

}

Interface Classes.

They are using for designing the model of a system.

The interface contains the list of unimplemented methods & defines the

responsibility of a class. The general form of interface is:

Interface interface name

{

 Method prototype-1;

 Method prototype-2;

}

For implementing the interface on the class, it will be as following:

Class class name: interface name

{

Body of the class;

}

Object Programming With C#6.0 language

183

183

Note.

If you implement an interface in your class then you must override all the

methods whatever is declared inside the interface.

It is shown in the following example:

Example.

 interface SatyaWork

{

int max(int a, int b);

 int add(int a, int b);

}

Class Satya: SatyaWork

{

 Public int max (int a, int b)

 {

 Return a > b? a: b;

 }

 Public int add (int a, int b)

 {

Return a + b;

 }

}

Class Program

 {

 Static void Main (string [] args)

 {

 Satya obj = new Satya ();

Console.WriteLine ("Largest: " + obj.max (10, 20));

Console.WriteLine ("Sum: " + obj.add (10, 20));

Console.Read ();

 }

 }

Object Programming With C#6.0 language

184

184

3- Polymorphism &Overloading.

It is defined more than function in the same name, so we can use this

technique to deal with the derived classes as if it's one.

Overloading technique is the practical implementation of Polymorphism.

If class contains more than one method with the same name but different

argument, then this term is known as overloading method.

It is shown in the following example:

Example 1.

Write any structure program in C# to show the overloading technology?

Class employee

 {

Private int id;

Private string name;

public void searchinfo ()

 {

 }

public void searchinfo (int x)

 {

 }

public void searchinfo(int x, string name)

 {

 }

 }

Object Programming With C#6.0 language

185

185

In the above example, we create three overloading methods that have the

same name (searchinfo), the first method with no arguments, the second

method with one argument and the third method with two arguments.

If we create object for this class (employee) and we want to call these

methods, they will appear as following.

Example 2.

Write program in C# to create an overloaded method named as max ()

which return the largest value among 2 or 3 given numbers.

Example 3.

Create an overloaded method named as LCM () which return the LCM of

either 2, 3 or 4 given values.

Class logic

{

int i;

public int lcm(int a, int b)

 {

 int m = a * b, res = 0;

for (i = 1; i <= m; i++)

 {

Object Programming With C#6.0 language

186

186

if (i % a == 0 && i % b == 0)

{

 res = i;

 break;

 }

 }

 return res;

}

public int lcm(int a, int b, int c)

 {

 int m = a * b * c, res = 0;

 for (i = 1; i <= m; i++)

 {

 if (i % a == 0 && i % b == 0 && i % c == 0)

 {

 res = i;

break;

 }

 }

return res;

 }

 public int lcm (int a, int b, int c , int d)

 {

 int m = a * b * c*d, res = 0;

 for (i = 1; i <= m; i++)

 {

 if (i % a == 0 && i % b == 0 && i % c == 0 && I %d == 0)

 {

 res = i;

 break;

 }

 }

 return res;

 }

 }

Object Programming With C#6.0 language

187

187

 class Program

 {

 static void Main(string[] args)

 {

 logic obj = new logic();

 Console.WriteLine ("Lcm of 2 Values: " + obj.lcm (10, 2));

 Console.WriteLine ("Lcm of 3 Values: " + obj.lcm (4, 2,6));

Console.WriteLine ("Lcm of 4 Values: " + obj.lcm (2, 3, 5, 7));

 Console.Read ();

 }

 }

Note.

We can use overloading technology for a contractor methods, it is shown

in the following example.

Example.

In the following example we will built two contractor overloading

methods, the first called (employee) does not have parameters, and the

second has the same name but with parameters, all these methods follow

to the employee class.

Class employee

 {

Private int id;

Private string name;

public employee ()

 {

 }

public employee (int x, string n)

 {

Object Programming With C#6.0 language

188

188

this.id = x;

this.name = n;

 }

}

4- Encapsulation.

It is a technique in which allows the programmer to keep at privacy of the

data and prevents the user from direct access to keep it from the mistakes

of external intervention, so in this technique we will define this data as a

private data, and in the same time we will access to this data through the

member methods.

It is shown in the following example:

Example.

In the following program will shows the encapsulation technology, such

that we will define two variables (name & id) and give them values then

we will print out at monitor screen, by using this technology?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication47

{

Class employee

 {

Private int id;

Private string name;

public void set_data (int i , string n)

 {

 id = i;

Object Programming With C#6.0 language

189

189

 name = n;

 }

public void show_data()

 {

Console.WriteLine (id);

Console.WriteLine (name);

 }

 }

class Program

 {

static void Main(string[] args)

 {

employee emp = new employee();

 emp.set_data (1, "Ali");

 emp.show_data ();

Console.ReadLine ();

} } }

Overriding Method.

If we define a method is a derived class which signature exactly matched

with any other method of base class, then this term is known as overriding

method.

It is shown in the following example:

Example.

In the following example we will shows overriding method technology.

Class first

 {

 Public virtual void msg ()

Object Programming With C#6.0 language

190

190

 {

 Console.WriteLine ("This is The Method of First Class");

 }

 }

 Class sec: first

 {

 Public override void msg ()

 {

 base.msg ();

Console.WriteLine ("This is The Method of Second Class");

 }

 }

 Class Program

 {

 Static void Main (string [] args)

 {

 Sec obj = new sec ();

 obj.msg ();

Console. Read ();

 } }

Exception Handling.

They are errors and exceptions management operations which appear in

run time, so for manage these errors. C# language allows to deal with it

through specific structure called Try…Catch. So the general form for using

this structure is.

Maybe there are 3 types of errors In C# program could be generated,

these are:

1. Compile time errors.

2. Logical Errors.

3. Run Time Errors.

Object Programming With C#6.0 language

191

191

1- Compile time errors are traced by the compiler and without debugging

this, your program could not execute.

2- Logical errors are occurred due to invalid logic of the programmer and

this could be traced by a programmer.

3- Run Time Errors- are known as exceptions and when they occurred

they terminated the execution a program.

Exception Structure.

To apply exception In C# program, we will use the following structure.

Try

{

}

Catch Orders that we want to validate;

{

 Orders that we want to be executed when the error appearance;

}

The feature of this technique is without this technique the program

execution will stop when simplest error appears in run time, but when we

use this technique the Implementation of the program will continue even

after the error has appeared.

To understand this technique notes the following example:

Example.

Suppose we want to divide two numbers (a & b) and we want to put the

result in

 (C) the variable (a) has specific value, but the variable (b) has (0), in the

division operation we know that we can't divide by (0) therefore error will

appear as in following.

Object Programming With C#6.0 language

192

192

This error called compiling run time error when the error appears, the

execution of program will stop, to continue implementation of the

program will use technology of Try …. Catch. It is shown in the following

example.

Example.

Suppose we want to implement of the same previous example but with

the exception handling technology?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication39

{

class Program

 {

static void Main(string[] args)

 {

Object Programming With C#6.0 language

193

193

try

 {

int a = 12;

int b = 0;

int c;

 c = a / b;

Console.WriteLine ("C=" + c);

 }

catch (Divide By Zero Exception ex)

 {

Console.WriteLine (ex.ToString ());

 }

Console.ReadLine ();

 }

 }

}

When we execute this program, error will appear in the program

execution window.

Object Programming With C#6.0 language

194

194

Note.

We can write more than one Catch within program, it is shown in the

following code.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication39

{

class Program

 {

static void Main(string[] args)

 {

try

 {

int a = 12;

int b = 0;

int c;

 c = a / b;

Console.WriteLine ("C=" + c);

 }

catch (Divide By Zero Exception ex)

 {

Console.WriteLine (ex.ToString ());

 }

catch (Arithmetic Exception ar)

 {

Console.WriteLine (ar.ToString ());

 }

catch (Index Out Of Range Exception ind)

 {

Console.WriteLine (ind.ToString ());

Object Programming With C#6.0 language

195

195

 }

Console.ReadLine ();

 }

 }

}

Note.

There is an optional part in the Try…Catch structure technology, it called

(Finally).

It is written after the Catch Part, so when the code has written inside

them, there will be implemented in every way (If the error occurred or did

not occur), it is shown in the following example:

Example.

Suppose we want to develop the previous example by adding (Finally) part

to this code that has written command to print out specific message at

screen.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace ConsoleApplication39

{

class Program

 {

static void Main(string[] args)

 {

try

 {

int a = 12;

Object Programming With C#6.0 language

196

196

int b = 0;

int c;

 c = a / b;

 Console.WriteLine ("C=" + c);

 }

catch (Divide By Zero Exception ex)

 {

Console.WriteLine (ex.ToString ());

 }

catch (Arithmetic Exception ar)

 {

Console.WriteLine (ar.ToString ());

 }

catch (Index Out Of Range Exception ind)

 {

Console.WriteLine (ind.ToString ());

 }

finally

 {

Console.WriteLine ("this code will implementation always");

 }

Console.ReadLine ();

 }

 }

}

Object Programming With C#6.0 language

197

197

Chapter 4
File Management in

C#

Object Programming With C#6.0 language

198

198

Object Programming With C#6.0 language

199

199

File Management in C# Language.

What's File?

It is a collection of data stored in a disk with a specific name and specific

directory path.

What is stream?

When a file opened for reading or writing, it becomes a stream, so what is

a stream? It is a sequence of bytes passing through the communication

path.

I/O Class Types.

In C# language there are three classes' types of I/O, they are.

1- Stream Reader Class.

It is using for receiving data from programmer/user and inserts it to

program as pure data to process it, there are two types of reading

statement in C# language, and they are.

A. ReadLine Statement.

B. ReadToEnd Statement.

2- Stream Writer Class.

It is using to read the results from C# Program and print out at screen to

become execution results for programmer/user, so there are two types of

writing statements in C# language, they are:

A. Write Statement.

B. WriteLine Statement.

Object Programming With C#6.0 language

200

200

3- File Access Class.

These are several classes using to deal with files (Open File, Close File,

Read from File, Write to File). Like.

A. ReadAllLines.

B. ReadAllText.

C. ReadLines.

D. WriteAllLines.

E. WriteAllText.

F. AppendAllText.

G. AppendAllLines.

Note.

If we want to use these classes in C# language, we should use the library

(System.IO) which is written in the start of program, it is shown in the

following figure.

Object Programming With C#6.0 language

201

201

Create File Object.

To read contains of a specific file.

We should firstly create object to deal with the reading file orders by using

Stream Reader Class, the general form of create object is.

StreamReader Object_Name = New StreamReader ("File Full Path");

Example.

Suppose we have a text file on the desk top named ("wissam.txt"), we can

create object to it as following.

StreamReader f = new StreamReader

("C:/Users/Wissam/Desktop/wissam.txt");

StreamReader Class.

1- ReadLine statement.

This statement is using to read the first line of the text from file, if we

want to read all the texts founded in this file with this statement

(ReadLine), we should use loop with this statement, it is shown in the

following program:

Example 1.

Suppose we have specific file in the desk top named ("Wissam.txt") and

we want to read the first line in this file, write program in C# to do that?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.IO;

Object Programming With C#6.0 language

202

202

namespace ConsoleApplication50

{

class Program

 {

static void Main(string[] args)

 {

 StreamReader f = new StreamReader

("C:/Users/Wissam/Desktop/wissam.txt");

 Console.WriteLine (f.ReadLine ());

 Console.ReadLine ();

 }

 }

}

When we execute this program, the following result will appear.

Example 2.

Rewrite the previous example to read all the texts within file by using

(ReadLine) statement?

using System;

Object Programming With C#6.0 language

203

203

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.IO;

namespace ConsoleApplication50

{

class Program

 {

static void Main(string[] args)

{

StreamReader f = new StreamReader

("C:/Users/Wissam/Desktop/wissam.txt");

string line;

while ((line=f.ReadLine()) != null)

 {

Console.WriteLine (line);

 }

Console.ReadLine ();

 }

 }

}

When we execute the above program, we will get the following results.

Object Programming With C#6.0 language

204

204

2- ReadToEnd Statement.

We use While Loop statement to read all texts within file, and we can

replace this loop by ReadToEnd order, it is shown in the following

example.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.IO;

namespace ConsoleApplication50

{

class Program

 {

static void Main(string[] args)

 {

StreamReader f = new StreamReader

("C:/Users/Wissam/Desktop/wissam.txt");

Console.WriteLine (f.ReadToEnd ());

Console.ReadLine ();

 }

 }

}

Object Programming With C#6.0 language

205

205

StreamWriter Class.

It is using to insert texts within file with clear the old text, to use these

classes we should create object to use write statements (by using

streamWriter Class), it is same object of read Statement, for example.

StreamReader Object_Name = New StreamReader ("File Full Path");

Example.

Suppose we have a text file on the desk top named ("wissam.txt"), we can

create object to it like the following.

StreamWriter f = new StreamWriter

("C:/Users/Wissam/Desktop/wissam.txt");

1- Write Statement.

It is using to write one line to the file, and if we want to write more than

one line we should repeat this statement, so all the inserted texts will be

at the same line, it is shown in the following example:

Note.

When we open any file for reading or writing we should close this file after

we have finished from it and close the connection with it, in C# language

we can do that through the Dispose order, so without this statement the

file will be suspended. It is shown in the following example.

Object_Name.Dispose ();

Object Programming With C#6.0 language

206

206

Example.

f2.Dispose ();

Example.

Suppose we have text file at a desktop named ("Wissam.txt") and we want

to write within this file two statements ("Computer Science") &

("Computer Engineering") by using write Statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.IO;

namespace ConsoleApplication50

{

class Program

 {

static void Main(string[] args)

{

StreamWriter f2 = new StreamWriter

("C:/Users/Wissam/Desktop/wissam.txt");

f2.Write ("computer Science");

f2.Write ("computer engineering");

f2.Dispose ();

Console.ReadLine ();

}

}

}

Object Programming With C#6.0 language

207

207

2- WriteLine Statement.

It is using to write one line to the file, and if we want to write more than

one line we should repeat this statement, so all the inserted texts will be

at different lines, it is shown in the following example:

Example.

Suppose we have text file at a desktop named ("Wissam.txt") and we want

to write within this file two statements ("Computer Science")

&("Computer Engineering") by using WriteLine Statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.IO;

namespace ConsoleApplication50

{

class Program

 {

static void Main(string[] args)

{

StreamWriter f2 = new StreamWriter

("C:/Users/Wissam/Desktop/wissam.txt");

f2.WriteLine ("computer Science");

f2.WriteLine ("computer engineering");

f2.Dispose ();

Console.ReadLine ();

}

}

}

Object Programming With C#6.0 language

208

208

3- File Access Class.

They are several classes using to deal with files (Open File, Close File, Read

from File, and Write to file…etc.). Like.

A. ReadAllLines Statement.

This order is using to read all lines within the file (Return results as lines),

and store the results in string array defined by the user, it follows to

specific class in C# called (File Class) , to use this order in C# language we

will use the following general form.

String_Array_Distination = File.ReadAllLines ("Text File Full Path ");

Example.

Suppose we have text file at a desktop named ("Wissam.txt") and we want

to read all the text within this file by using ReadAllLines Statement, write

program in C# to do that?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.IO;

namespace ConsoleApplication50

{

class Program

{

static void Main(string[] args)

{

string [] str =File .ReadAllLines("C:/Users/Wissam/Desktop/wissam.txt");

foreach (var item in str)

{

Object Programming With C#6.0 language

209

209

Console.WriteLine (item);

}

Console.ReadLine ();

}

}

}

Note.

We note that in above example we don't need to use (Dispose order) to

close connection with the file, so in this type it will disconnect

automatically.

B. ReadAllText Statement.

This order is using to read all texts within the file (Return results as text

(one package)), and store the results in string variable defined by the user,

it is followed to specific class in C# called (File Class) , to use this order in

C# language we will use the following general form.

String_Variable_Distination =File.ReadAllLines ("Text File Full Path");

Example.

Suppose we have text file at a desktop named ("Wissam.txt") and we want

to read all the text within this file by using ReadAllText Statement, write

program in C# to do that?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

Object Programming With C#6.0 language

210

210

using System.IO;

namespace ConsoleApplication50

{

class Program

 {

static void Main(string[] args)

 {

string str =File .ReadAllText

("C:/Users/Wissam/Desktop/wissam.txt");

Console.WriteLine (str);

Console.ReadLine ();

 }

 }

}

C- ReadLines Statement.

It is using to return line after line as a list (not array) from specific text file,

so it also called by using (File Class), the general form of using this

statement is.

Destination as a list = File.ReadLines ("Text File Full Path").ToList ();

Example.

Suppose we have text file at a desktop named ("Wissam.txt") and we want

to read all the text within this file by using ReadLines Statement, write

program in C# to do that?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.IO;

Object Programming With C#6.0 language

211

211

namespace ConsoleApplication50

{

class Program

 {

static void Main(string[] args)

 {

List<string> lst =File. ReadLines

("C:/Users/Wissam/Desktop/wissam.txt").ToList ();

Console.WriteLine (lst);

Console.ReadLine ();

 }

 }

}

D- WriteAllLines Statement.

It is using to write many strings at many lines in specific text file, this

statement is working by (File Class), the general form of using this

statement in C# language is.

File.WriteAllLines ("Text File Full Path ", Array of string);

Example.

Write program in C# language to write full string to specific text file in

desktop called ("Wissam.txt") by using WriteAllLines statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.IO;

namespace ConsoleApplication50

Object Programming With C#6.0 language

212

212

{

class Program

 {

static void Main(string[] args)

 {

string [] str = { "Baghdad", "Kerbalaa", "Babylon", "Najif" };

File.WriteAllLines ("C:/Users/Wissam/Desktop/wissam.txt", str);

Console.ReadLine ();

 }

 }

}

Note.

You must know that the use of this instruct will lead to delete old

information in the file and print new information within it.

E- WriteAllText Statement.

It is using to write one string as one package at one line in specific text file,

this statement is working by (File Class), so the using of this statement will

lead to delete the old information in the text file and print the new

information within this file.

The general form of using this statement in C# language is:

File.WriteAllLines ("Text File Full Path ", specific string as one package);

Example.

Write program in C# language to write string as a one package to specific

text file in desktop called ("Wissam.txt") by using WriteAllText statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

Object Programming With C#6.0 language

213

213

using System.IO;

namespace ConsoleApplication50

{

class Program

 {

static void Main(string[] args)

 {

 File.WriteAllText ("C:/Users/Wissam/Desktop/wissam.txt", "how are you I hope you

are fine");

 Console.ReadLine ();

 }

 }

}

F- AppendAllText Statement.

It is using to append specific strings as one package at the same line in

specific text file, this statement is working by (File Class), so the using of

this statement will lead to keep the old information in the text file and add

the new information within this file.

The general form of using this statement in C# language is:

File.AppendAllText ("Text File Full Path ", specific string as one package);

Example.

Write program in C# language to add string as a one package to specific

text file in desktop called ("Wissam.txt") by using AppendAllText

statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

Object Programming With C#6.0 language

214

214

using System.IO;

namespace ConsoleApplication50

{

class Program

 {

static void Main(string[] args)

 {

File.AppendAllText ("C:/Users/Wissam/Desktop/wissam.txt"," Rely I

miss you");

Console.ReadLine ();

 }

 }

}

G- AppendAllLines Statement.

This statement is using to append array of string in the form of lines in

specific text file, with keeping the old information in the old file, it is

followed to the (File Class).

The general form of using this statement is:

File.AppendAllLines ("Text File Full Path", array of string);

Example.

Write program in C# language to add array of string to specific text file in

desktop called ("Wissam.txt") by using AppendAllLines statement?

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.IO;

Object Programming With C#6.0 language

215

215

namespace ConsoleApplication50

{

class Program

 {

static void Main(string[] args)

 {

string [] str = { "Ahmed", "Ali", "Hassa" };

File.AppendAllLines ("C:/Users/Wissam/Desktop/wissam.txt", str);

Console.ReadLine ();

 }

 }

}

Home Work Questions.

Question 1.

Write program in C# language to read two values (X & Y), then multiply

these numbers without using the multiply operation?

Question2.

Write program in C# language to read two values (X & Y), then division

these numbers without using the division operation?

Question3.

Write program in C# language to read (20) value from keyboard, find the

summation of even numbers and odd numbers?

Question4.

Write program in C# language to read (20) value from keyboard, find the

summation of positive numbers and negative numbers?

Question5.

Object Programming With C#6.0 language

216

216

Write program in C# language to sort elements of one dimensional array

have (10) elements, then print out the sorted array (increasing sort) at

computer screen?

Question6.

Write program in C# language to sort elements of one dimensional array

have (10) elements, then print the sorted array (decreasing sort) at

computer screen?

Question 7.

Write program in C# language to read two dimensional array have (3-row)

and

(3-column), then change the elements of the first row with the elements

of third row?

Question8.

Write program in C# language to read two dimensional array have (3-row)

and

(3-column), sort the elements of these array columns increasing?

Question9.

Write program in C# language to read string from keyboard and print out

every word at independent line?

Question 10.

Write program in C# language to read string from keyboard and print out

the number of the vowels at the computer screen?

Question 11.

Write program in C# language to read string from keyboard and print out

the central character in this string?

Object Programming With C#6.0 language

217

217

Question 12.

Write program in C# language to read string from keyboard and inverse

the first character and latest character from every word?

Question 13.

Write program in C# language to read string from keyboard and print out

the first character from every word?

Question 14.

Write program in C# language to read string from keyboard and print out

the latest character from every word?

Question 15.

Write program in C# language to read two arrays everyone have (5)

elements, contact them, then print out the result at computer screen?

Question 16.

Write program in C# language to read one dimensional array have (10)

elements, print out the largest value and smallest value in this array?

Question 17.

Write program in C# language to read one dimensional array have (10)

elements, fill these array by elements, then print out the repetition

number it in this array?

Question 18.

Write program in C# language to compute (Xn
)
 by using recursive

function?

Question 19.

Write program in C# language to read several numbers from keyboard.

Find the summation of latest two numbers?

Object Programming With C#6.0 language

218

218

Question20.

Write program in C# language to read two dimensional array have (3-row)

and

(3-column), convert to one dimensional array?

Question21.

write a program in C# language to read student mark from key board if

the mark >=90 and < 100 print out (A) , if the mark >=80 and < 90 print out

(B) , if the mark >= 70 and < 80 print out (C) , if the mark >= 60 and <70

print out (D) , if the mark >=50 and < 60 print out (E) , if the mark < 50

print out (FAILER) , by using nested if statement?

Question22.

Write program in C# language to read special character from key board

and read tow variables (x & y) if the special character is (+) add (x & y) if (-)

subtract (x & y) if (*) multiplication (x & y) if (/) division (x & y) otherwise

print out "special character" by using case statement?

Question23.

Write program in C# language to enter two lengths (L1 & L2), find the

average of the two lengths, and print out the largest length?

Question24.

Write program in C# language to read (20) values from keyboard and find

the summation of them?

Question25.

Write program in C# language to read (10) values from keyboard and find

the largest and smallest value?

Question26.

Write program in C# language to enter one dimensional array have (10)

elements and print out the positive and negative numbers?

Question27.

Write program in C# language to read tow dimensional arrays have (3

row) and

Object Programming With C#6.0 language

219

219

 (3 column) and find the average of each row?

Question28.

Write program with C# language to find the sum and average of (4)

students have (3) degree and find the sum of the average?

Question29.

Write program in C# language to read tow dimensional array have 3-row

and

3-culomn find the summation of the main diagram?

Question30.

Write program in C# language to read string from key board and find the

length of the string?

Question31.

Write program in C# language to read string and print the remained line

after find the first space by using pointer?

Question32.

Write program in C# language to exchange the value of (x) by value of (y)

and value of (y) by value of (x) by using the function technology, and using

call by actual parameter?

Question33.

Write program in C# language to exchange the value of (x) by value of (y)

and value of (y) by value of (x) by using the function technology, and using

call by formal parameter?

Object Programming With C#6.0 language

220

220

Question34.

Write program in C# language to exchange the value of (x) by value of (y)

and value of (y) by value of (x) by using the function technology, and using

call by reference?

Question35.

Write program in C# language to solution the following equation by using

function?

 a * b + d

 Z =

 x + y2 - b

Question36.

Write program in C# language to found (N!) by using recursive function?

Question37.

write program in C# language to read tow array (A) and (B) everyone is

one dimensional array has (10) elements, then add the elements of the

tow Arrays and put the result in array name (C) , use for every step

function ?

Question38.

Write program in C# language to read string capital latter and convert it to

small latter?

Question39.

Write program in C# to create an overloaded method named as max ()

which return the largest value among 2 or 3 given numbers?

Object Programming With C#6.0 language

221

221

Question40.

Write program in C# to create new class which have information of

programmer (id, name, and specialty) and print out these information at

screen by using Abstract Class technology?

Question41.

Create a method named as fact () which contains a number as argument

& return the factorial of that number?

Question42.

Create a method named as power () which contains base number(x) and

power number (n) as argument & return x to the power n?

Question43.

Write program in C# language to create a Method named as table () which

contains a number as argument and print the table of given number?

Question44.

Suppose we have specific file in the desk top name ("Wissam.txt") and we

want to read the first line in this file, write program in C# to do that?

Question45.

Suppose we have text file at a desktop name ("Wissam.txt") and we want

write within this file two statements ("Computer Science") & ("Computer

Engineering") by using write Statement?

Object Programming With C#6.0 language

222

222

Object Programming With C#6.0 language

223

223

C.V

Personal Information.

Name: Wissam Ali Hussein Salman Al Kuzaey.

Birth day: Baghdad / 14-10-1977.

Gender: Male.

Marital: married.

Graduation: B.Sc. in computer Science / Baghdad University / 2003.

 M.Sc. in computer Science / Sam Higgin Buttem Institute

 of technology – India / 2013.

M.Sc. Topic: Design & Implementation of Student Information

Management System for Karbala University.

Specialization: Data Base & Cloud Computing.

Scientific Title: Assistant Lecturer.

Address: Republic of Iraq / Holly Karbala City / AL-hur district.

Phone No. : 00964 7724918820.

Email: wesali77@yahoo.com.
 wissamali77@gmial.com.

Languages: Arabic Language + English Language.

Certificates.

1. B.Sc. in Computer Science \ Baghdad University \ graduation year

2002-2003.

2. M.Sc. In Computer Science \ Sam Higgin Buttem Institute of

technology \ India\ graduation year 2013.

3. IC3 International certificate with estimation (very good).

4. TOEFL Certificate in English Language \ Karbala University.

mailto:wesali77@yahoo.com
mailto:wissamali77@gmial.com

Object Programming With C#6.0 language

224

224

5. Web Design Certificate from Microsoft Academy \ Qadiseya University

branch.

6. Database Design Certificate from Microsoft Academy \ Qadiseya

University branch.

7. Geographic Information System (GIS) Certificate from (RTI)

Organization \ Holly Karbala.

8. Java Programming Language Certificate \ Crest Institute \ Hyderabad

\ India.

9. SQL Server Certificate \ from IVAIS institute \ Hyderabad \ India.

10. Visual Basic.Net \ Crest Institute \ Hyderabad \ India.

11. English Certificate \ IELETES guru Institute \ Hyderabad \ India.

12. Database Administrator 1 Certificate \ Oracle University.

13. Database Administrator 2 Certificate \ Oracle University.

14. HTML + Java Script Certificate \ Banchab IT Collage \ India.

15. Web Design Certificate by using ASP.net \ Banchab IT Collage \ India.

16. Laptop maintenance \ SCS Indian Institute \ Hyderabad \ India.

17. I got certificate pass of teaching methods course from Ministry of

higher education / university of Kerbela.

18. I got certificate for Web Application & Hacking Security from

AL_Kafeel Institute of Information technology and developing skills.

Membership organizations.

1. I am Member of the Iraqi Teachers' Union.

2. I am Member of the Association of Iraqi programmers.

3. I am member of the teaching staff of educational association in Iraq.

4. I am member of the Scientific Forum for SHIATS University / India.

5. I am member of NIIT Computer Academy Education & Training Center

/ Hyderabad / India.

Object Programming With C#6.0 language

225

225

Object Programming With C#6.0 language

226

226

