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Abstract

We give an overview of the most important public-key cryptosystems
and discuss the difficult task of evaluating the merit of such systems.

Key words. Cryptography, Public Key, Elliptic Curve
AMS subject classifications. 94A60, 11T71, 14G50, 68P25

1 Introduction

Before the invention of public-key cryptography, a 1968 book about time-sharing
systems [124] first hinted at the possibility of a new type of cryptography. The
author described a new one-way cipher used by R. M. Needham in order to
enable a computer to verify passwords without storing information that an in-
truder could use to impersonate a legitimate user.

In Needham’s system, when the user first sets his password, or when-
ever he changes it, it is immediately subjected to the enciphering
process, and it is the enciphered form that is stored in the com-
puter. Whenever the password is typed in response to a demand
from the supervisor for the user’s identity to be established, it is
again enciphered and the result compared with the stored version.
It would be of no immediate use to a would-be malefactor to obtain
a copy of the list of enciphered passwords, since he would have to
decipher them before he could use them. For this purpose, he would
need access to a computer and even if full details of the enciphering
algorithm were available, the deciphering process would take a long
time.
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In 1974 the first detailed description of such a one-way function was pub-
lished [98]. Speaking informally, a one-to-one function f : X → Y is “one-way”
if it is easy to compute f(x) for any x ∈ X but hard to compute f−1(y) for
most randomly selected y in the range of f .1 In [98] the passwords and their en-
ciphered forms were regarded as integers modulo a large prime p, and the “one-
way” map from Z/pZ to Z/pZ was given by a polynomial f(x) which is not hard
to evaluate by computer but which takes an unreasonably long time to invert.
In the paper p = 264−59 and f(x) = x224+17+a1x

224+3+a2x
3+a3x

2+a4x+a5,
where the coefficients ai were arbitrary 19-digit integers. At the time one-way
functions were used only to store passwords and not to send scrambled messages.

Until the late 1970’s, all cryptographic message transmission was by sym-
metric key. This means that someone who has enough information to encrypt
messages also has enough information to decipher messages. As a result, any
two users of the system who want to communicate secretly must have exchanged
keys in a safe way, perhaps using a trusted courier.

The arena for applying mathematics to cryptography expanded dramatically
when Diffie and Hellman invented an entirely new type of cryptography, called
public key [32].2 At the heart of this concept is the idea of using a one-way
function for encryption.

The functions used for encryption belong to a special class of one-way func-
tions that remain one-way only if some information (the decryption key) is kept
secret. Again using informal terminology, we can define a public-key encryption
function (also called a “trapdoor” function) as a map from plaintext message
units to ciphertext message units that can be feasibly computed by anyone hav-
ing the public key but whose inverse function (which deciphers the ciphertext
message units) cannot be computed in a reasonable amount of time without
some additional information, called the private key.

This means that everyone can send a message to a given person using the
same enciphering key, which can simply be looked up in a public directory whose
contents can be authenticated by some means. There is no need for the sender
to have made any secret arrangement with the recipient; indeed, the recipient
need never have had any prior contact with the sender at all.

A possible reason for the late development of the concept of public key is
that until the 1970’s cryptography was used mainly for military and diplomatic
purposes, for which symmetric-key cryptography was well suited. However,
with the increased computerization of economic life, new needs for cryptography
arose. Unlike in the military or the diplomatic corps — with rigid hierarchies,
long-term lists of authorized users, and systems of couriers — in the applications
to business transactions and data privacy one encounters a much larger and more

1In some situations one wants a one-way function to have a stronger property, namely,
that it is hard to compute any partial information about f−1(y) (for instance, whether it is
an odd or even number) for most randomly selected y.

2It is now known that some of the ideas published in [32] and also in [99] had been developed
in secret a few years before by the British intelligence services. However, they did not appear
to appreciate the importance of public-key cryptography or the possibility of signatures and
other applications. It was only with the publication of [32] and [99] that research in this area
started to flourish.
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fluid structure of cryptography users. Thus, perhaps public-key cryptography
was not invented earlier simply because there was no real need for it until
recently.

Some of the purposes for which public-key cryptography has been applied
are:

1. confidential message transmission;

2. identification systems, where users prove that they are authorized to have
access to data or to a facility, or that they are who they claim to be;

3. authentication, which establishes that the message was sent by the person
claimed and that it hasn’t been tampered with;

4. non-repudiation, which guards against people claiming not to have agreed
to something that they really agreed to;

5. key establishment, where two people using the open airwaves want to agree
upon a secret key for use in some symmetric-key cryptosystem;

6. electronic cash mechanisms that ensure spender anonymity;

7. electronic voting schemes that ensure that votes are confidential and cor-
rectly tallied.

These tasks are performed through various types of protocols. The word
“protocol” simply means an orderly procedure in which people send messages
to one another.

The path from an academic proposal for a new type of mathematical cryp-
tography to its practical implementation is long and arduous. First of all,
mathematicians and cryptographers must become convinced that the underly-
ing number-theoretic or combinatorial problem upon which the system’s security
relies is truly intractable. The only way to be more-or-less sure of this is to wait
while experts try to find reasonably fast algorithms to break the cryptosystem;
if they fail to do so after several years of trying, then one might believe that the
problem is most likely an intrinsically difficult one. For example, most people
believe that integer factorization, upon which RSA cryptography is based (see
§3), is intractable (for at least the next few years) for integers of more than 300
decimal digits.

It would be nice, of course, to be able to prove theorems that state that such
a problem cannot be efficiently solved. Ideally, such a theorem would show that
the currently known algorithms are close to best possible. But unfortunately,
no nontrivial theorems of that sort have been proved for any of the problems
whose intractability is assumed in public-key cryptosystems.

There has been a lot of work recently on so-called provable security. However,
this is a misnomer. “Provable security” results have a conditional form: “If
problem X is intractable, then the cryptosystem Y is secure against attacks of
type Z.” Note that the intractability of the underlying mathematical problem
is being assumed; moreover, there is no assurance that cryptosystem Y will not
succumb to an attack of type Z ′, where Z ′ 6= Z.
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Even if a consensus emerges that the mathematical problem at the heart of
a newly proposed cryptosystem is really intractable, many other issues remain.
One must evaluate different methods of choosing parameters for the system.
How big must the numbers be? What are the “weak parameters” (parameters
for which the supposedly difficult problem becomes much easier) that must be
avoided?

In the real world, a company’s credibility and large sums of money are at
stake. How can businesses protect themselves against liability if a cryptosys-
tem that was supposed to be secure is broken and thousands of credit card
numbers are stolen? The answer is that various “standards bodies” affiliated
with professional organizations such as ANSI, IEEE, and ISO, evaluate and
make recommendations for the use of approved cryptosystems. If companies
use products that adhere to these guidelines, then they are largely protected
from any possible lawsuit if a system is broken. It would be extremely risky
for a company to sell a product with a type of cryptography that has not been
approved by the major standards bodies.

Standards bodies typically include representatives of various constituencies
and professional groups, not all of whom are knowledgeable about the math-
ematics of cryptography. Before a cryptosystem is included in the recommen-
dations of a standards body, a large number of people have the opportunity to
raise objections either to the cryptosystem in its entirety or to the proposer’s
suggestions for implementation (choice of parameters, methods of generating
keys, etc.). Naturally, marketers of competing cryptosystems have a strong in-
centive to find something wrong with the new system. And no one wants to end
up in the embarrassing situation of having approved a system that is broken a
few months later. So it is not surprising that standards bodies tend to be con-
servative and slow-moving. In the case of the most popular current public-key
cryptosystems, the time lags between academic publication of a proposal for a
type of cryptography and approval of specific recommendations for its practical
use were roughly 15 years.

We shall discuss in most detail the public-key cryptosystems that are of
greatest practical importance, but we shall also mention some other systems
that are intrinsically interesting or that show some promise for the future. This
survey will be selective rather than exhaustive, and will reflect our own tastes
and judgments.

Researchers who have a computer science background might fault us for
neglecting foundational questions. Because cryptography is multidisciplinary,
opinions about the importance of certain lines of work often differ sharply.
In particular, some mathematicians are skeptical about the value for practi-
cal cryptography of the theoretical results that other researchers consider to be
fundamental to the field. At the risk of exaggerating, we might summarize the
critics’ point of view as follows: there is no such thing as a useful, nontrivial,
unconditional theorem in cryptography. The theorems that one can prove, the
skeptics point out, generally have assumptions that are so strong that the de-
sired conclusion essentially becomes an immediate consequence. Such theorems
can clarify the relationship among various definitions and terms, but because
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they lack true mathematical depth, they cannot provide any real assurance of
the security of a cryptosystem.

We do not entirely share this skeptical viewpoint, at least not in its most
extreme form. However, like most mathematicians working in cryptography, we
prefer a pragmatic rather than theoretical approach. Our views on the practical
relevance of “provable security” results are presented in more detail in our recent
article [68].

2 Notions of Security

It is a subtle and complicated matter to evaluate the security of a public-key
cryptosystem. It is not enough to know that an adversary is unlikely to be able
to compute the inverse of the encryption function. Most successful attacks on
popular cryptosystems are more indirect than that. For example, suppose that
Alice is receiving messages that have been encrypted using RSA (see below).
The plaintext messages have to adhere to a certain format, and if a decrypted
message is not in that form Alice’s computer transmits an error message to the
sender. This seems innocuous enough. However, Bleichenbacher [14] has shown
that sometimes such error messages could be used to compromise security.

A cryptographic protocol is said to be secure if an adversary cannot achieve
certain well-defined goals, that is, cannot compromise the system in a certain
clearly stated way. It is usually assumed that the adversary not only knows all
the public keys, but also has a complete description of the algorithms used to
carry out the protocol. When making a statement about the security of a pro-
tocol, one must explicitly delineate the adversary’s capabilities, for example, its
computational power and the nature of its interactions with legitimate parties.

A protocol is considered robust if it can withstand attacks by adversaries
who are powerful and whose goals are modest. In contrast, the most obvious
notion of security for a public-key encryption scheme — that an adversary who
is given a public key and a ciphertext C derived with that public key is unable
to determine (in a feasible amount of time) the corresponding plaintext M —
is actually quite weak. In practice one might wish to prevent adversaries from
meeting the less ambitious goal of being able to determine any information
whatsoever about M from C. This stronger notion, called semantic security,
was first studied systematically by Goldwasser and Micali [45]. Furthermore,
the adversary may be permitted access to a decryption “oracle,” that is, a black
box from which it can obtain the decryption of any ciphertext of its choice
except, of course, the target ciphertext C. The relationships between various
notions of security for public-key encryption schemes were studied in [7].

In recent years, researchers have become increasingly aware of the possibility
of attacks that exploit specific properties of the implementation and operating
environment. Such side-channel attacks utilize information leaked by the com-
puting devices during the execution of private-key operations such as decryp-
tion and signature generation. The kind of information that can be exploited
includes execution time [69], power consumption [70], electromagnetic radiation
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[2], induced errors [16], and error messages [14, 77]. Such information may be
difficult to obtain on some devices, such as a workstation located in a secure
office, but may be easy to obtain from other devices, such as a smart card which
draws power from an external, untrusted source.

We should caution that most of the cryptosystems described in the remainder
of the article are only primitives. In cryptography the term “primitive” means
a basic ingredient in a cryptosystem. In practice, one generally has to modify
and combine these primitives in a careful way so as to simultaneously achieve
various objectives related to efficiency and strong notions of security.

3 RSA

The public-key cryptosystem that has been in practical use the longest — and
is still the most popular system for electronic commerce — is RSA [99]. The
basic construction is rather simple. Let the n-bit integer N = pq be the product
of two large primes of roughly the same size. Typically, N has about 1000 bits,
and p and q each have about 500 bits.3

Let e and d be two integers satisfying ed ≡ 1 (mod ϕ(N)), where ϕ(N) =
(p − 1)(q − 1) = N + 1 − (p + q) is the Euler ϕ-function of N , equal to the
number of integers 0 ≤ i < N that are relatively prime to N . These integers
N, e, d are called, respectively, the RSA modulus, the encryption exponent, and
the decryption exponent. The first two form the public key and are made publicly
known. The integer d, sometimes called the secret exponent, is the private key
known only to the person (Alice) who receives the enciphered message.

In practice, public-key encryption schemes are many times slower than their
symmetric-key counterparts. Thus, RSA is typically used either to encrypt a
short message (such as a credit card number) or else to encrypt a randomly
chosen key k, which in turn is used with a symmetric-key encryption scheme
such as the Advanced Encryption Standard (AES) to encrypt the message itself.
The key k is usually quite short (e.g., 128, 192 or 256 bits for the AES), and
can therefore be regarded as an integer M in the interval [0, N − 1].

To encrypt such a message unit M , the sender Bob computes the ciphertext
C, which is the least positive residue of M e modulo N . To decrypt C, the
recipient Alice computes the least positive residue of Cd modulo N . (These
operations of modular exponentiation can be carried out rapidly by means of a
“repeated squaring” method.) Using Euler’s theorem from elementary number
theory, one can easily show that Cd ≡Med ≡M (mod N).

Anyone who succeeds in factoring N = pq can immediately break RSA by
finding an inverse of e modulo (p−1)(q−1). For many years it was conjectured
that, conversely, the only way that RSA can be broken (in other words, the
only way that the encryption function can be inverted) is to factor N . However,
work by Boneh and Venkatesan [21] suggests that this conjecture might be false,

3It is easy to find random large primes by choosing random integers and performing tests
on them — either very efficient “strong primality” tests or the deterministic polynomial time
primality test discovered in 2002 by M. Agrawal, N. Kayal, and N. Saxena.
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that is, that the integer factorization problem might be strictly harder than the
problem of inverting the RSA function M 7→M e modulo N .

3.1 Signatures

A particularly attractive feature of RSA is that there is a natural way to digitally
sign messages. Suppose that Alice sends a message to Bob and wants to append
a short “signature” S to her message that will convince Bob that it was really
Alice who sent the message and that the message he received was not altered
during transmission. Her whole message M might be long, consisting of a large
number of message units. Alice’s first step is to apply a publicly known hash
function to M . This is a function M 7→ H, where H is no longer than a
single message unit. The function must be easy to compute and must satisfy
two properties: (1) it must be computationally infeasible to find two different
messages with the same hash value, and (2) given H, it must be computationally
infeasible to find any message with hash value H.

Alice uses her RSA private key dAlice to form her signature. Namely, she
sets S equal to the least positive residue of HdAlice modulo NAlice. Bob, who has
already computed the hash value H of the message he received and who knows
Alice’s public key, can check that SeAlice ≡ H (mod NAlice). If this congruence
holds, he knows that no one but Alice could have composed the signature S
(since no one else knows her decryption exponent dAlice), and he also knows
that the message he received could not have been tampered with (because it
has the same hash value as the message that Alice sent).

3.2 Factorization attack on RSA

The most basic attack on RSA consists of factoring the modulus N = pq. The
integer factorization problem has been the subject of intense research, especially
in the years since the invention of RSA in 1977. Let N be an n-bit integer. Most
of the subexponential-time algorithms — those that take fewer than 2n

c

steps
with c < 1 — are of index calculus type. We now describe a simple index
calculus algorithm to factor N .

The method is based on the elementary observation that if x2 ≡ y2 (mod N),
then N = pq|(x + y)(x − y), and so p and q each must divide either x + y or
x − y. If x and y were formed independently of one another, then one expects
that 50% of the time the two primes will divide different factors, say p|x + y,
q|x − y. In that case we can factor N by using the Euclidean algorithm to
compute gcd(N,x+ y) = p.

We start the index calculus factoring algorithm by choosing a factor base
F consisting of all primes less than some bound B along with the number
−1: F = {p0, p1, . . . , pr}, where p0 = −1, p1 = 2, p2 = 3, . . .. We next
choose positive integers a < N (either randomly or according to some convenient
criteria) and compute the least absolute residue of a2. If this residue cannot be
written as a product of numbers in our factor base, we choose another value of
a. We finally arrive at a system of mod N relations of the form a2

i ≡
∏r

j=0 p
αi,j

j ,
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i = 1, . . . , s. We try to form a product
∏

i a
2νi
i ≡∏

i,j p
νiαi,j

j , where νi ∈ {0, 1},
in such a way that we get a perfect square on the right. In other words, we
need each prime on the right to occur to an even power; that is,

∑
i νiαi,j

must be even for each j = 0, . . . , r. This amounts to solving a system of r + 1
simultaneous equations in s unknowns over the field F2 = {0, 1}. Once we have
such a product, we can set x =

∏
i a

νi
i and y =

∏
j p

µj

j with µj =
1
2 (
∑

i νiαi,j).

Then x2 ≡ y2 (mod N), and there is a 50% chance that we can immediately
factor N . If we fail to factor N , we find another solution to the simultaneous
equations over F2, and try again.

Example 1 Let N = 319, and choose F = {−1, 2, 3, 5, 7, 11, 13}. After squar-
ing some 2-digit numbers, we find that we can take ai, 1 ≤ i ≤ 7, equal to
17, 18, 19, 25, 27, 33, 36 because of the following relations mod 319:

172 ≡ −2 · 3 · 5, 182 ≡ 5, 192 ≡ 2 · 3 · 7, 252 ≡ −13,

272 ≡ 7 · 13, 332 ≡ 22 · 3 · 11, 362 ≡ 22 · 5.
The exponents of the pj in

∏
i a

2νi
i are the left sides of the following system of

congruences mod 2.

ν1 + ν4 ≡ 0

ν1 + ν3 + 2ν6 + 2ν7 ≡ 0

ν1 + ν3 + ν6 ≡ 0

ν1 + ν2 + ν7 ≡ 0

ν3 + ν5 ≡ 0

ν6 ≡ 0

ν4 + ν5 ≡ 0

One solution for the ν-vector is (0, 1, 0, 0, 0, 0, 1), but that leads only to the
trivial congruence 102 ≡ 102 (mod N). We have better luck with the solution
(1, 1, 1, 1, 1, 0, 0), which gives (17·18·19·25·27)2 ≡ (2·3·5·7·13)2 (mod N), i.e.,
1122 ≡ 1782 (mod N). We now immediately compute gcd(319, 112+178) = 29,
and factor 319 = 29 · 11.

It can be shown that the time required to factor an n-bit integer by the

above index calculus factorization method is of order 2n
1/2+ε

for any ε > 0.
(More precisely, the number of steps is exp(O(

√
n log n)).) Throughout the

1980’s modifications and generalizations were introduced that improved upon
the performance of index calculus methods; however, no one was able to reduce
the exponent of n below 1/2 + ε. Even when H. W. Lenstra, Jr. developed an
exciting and conceptually very different factorization method based on elliptic
curves [75], asymptotically his method required roughly the same amount of time
as the index calculus algorithms. Some people wondered whether the exponent
1/2 + ε might be best possible for a general integer factorization algorithm.
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However, in the 1990’s ideas of J. Pollard [96] led to a major breakthrough
in factorization, called the number field sieve. By carrying over index calculus
to algebraic number fields, it was possible to factor an arbitrary n-bit integer in

time bounded by 2n
1/3+ε

for any ε > 0 . (More precisely, exp(O( 3
√
n log2 n)).)

The number field sieve is at present the fastest method for factoring an RSA
modulus; the current record is a number of 576 bits.

The reduction of the exponent of n from 1/2 + ε to 1/3 + ε has important
consequences in the long run. It means that even modest improvements in
hardware and software can significantly increase the size of the numbers that
can be factored. For this reason the current recommendation for implementation
of RSA is to use numbers of at least n = 1024 bits.

A recent research trend has been to design special-purpose hardware on
which factoring algorithms such as the number field sieve might be faster or
more cost-effective than on conventional general-purpose computers. Among the
noteworthy proposals are Shamir’s TWINKLE machine (see [73]), Bernstein’s
circuits [10], and the TWIRL machine of Shamir and Tromer [109]. Shamir and
Tromer [109] estimate that the relation-generation stage of the number field
sieve for factoring a 1024-bit RSA modulus can be completed in less than a
year by a machine that would cost about US $10 million to build, and that the
linear algebra stage is easier. Such special-purpose hardware has yet to be built
(unless it has been built in secret), so it remains to be seen if this work will have
any impact on the size of RSA moduli used in practice.

3.3 Other algorithmic attacks on RSA

Most successful attacks on RSA are not based on factoring the modulus N and
do not result from the implementer’s use of insufficiently large N . Rather, they
exploit subtle features of the particular way in which RSA is used. We give two
examples; for a more thorough treatment, see [15].

First of all, suppose that Alice chooses a small value for her decryption
exponent d in order to speed up the decryption of messages sent to her and
the signing of messages that she sends. (Recall that both tasks require her to
raise an integer to the d-th power modulo her n-bit modulus N .) If d is much
smaller than N , this is a very bad idea. Namely, Wiener [123] showed that if d
has fewer than n/4 bits (more precisely, if d < 1

3N
1/4), then an unauthorized

person knowing only the public key can efficiently compute d. Boneh and Durfee
[17] raised the exponent of N to 0.292, and they conjectured that if d < N 1/2,
then there should be an efficient algorithm to determine d. Thus, Alice should
always choose d with more than n/2 bits; preferably, d should have n bits.

On the other hand, Alice can probably get away with choosing her public
exponent e (which is used to encrypt messages and also to verify signatures) to
be small. In fact, most implementations of RSA use e = 3 or e = 216+1 = 65537.
But H̊astad [50] found a flaw when e is small and Alice wants to broadcast the
same message M to a large number of users with their different public keys
Ni and small public exponents. Suppose, for instance, that all of the public
exponents are e = 3. Then an eavesdropper Eve who knows the ciphertext
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Ci sent to three different recipients can recover the message M . To see this,
suppose that M < Ni, i = 1, 2, 3 (otherwise M has to be broken up into smaller
message units). Eve knows the residue of M 3 modulo each Ni, since that is
precisely Ci. Using the Chinese Remainder Theorem, she can then compute the
residue of M3 modulo the product N1N2N3. But that residue is equal to M 3

itself, since M3 < N1N2N3. Once Eve knows the actual value of M 3, she can
trivially extract the cube root to find M .

This difficulty — along with some others — can be avoided by padding
messages, that is, by inserting a short sequence of random symbols in message
units before sending them (in such a way that the recipient can easily delete the
added symbols before reading the text). Of course, a different random sequence
must be inserted each time Alice sends a message.

3.4 Side-channel attacks

We give an example of a power analysis attack on the RSA signature scheme.
Suppose that a smart card generates signatures using the repeated squaring
method for exponentiation. That is, if the binary representation of the decryp-
tion exponent is d =

∑l
i=0 di2

i, then the smart card computes S = Hd mod N
as follows:

1. S ← 1.

2. For i from 0 to l do
If di = 1 then S ← S ·H mod N .
H ← H2 mod N .

3. Return(S).

Because modular squaring and modular multiplication are usually implemented
as different routines (since the former is faster than the latter), it can be ex-
pected that the power consumed by the smart card while performing a squaring
has different characteristics than when a multiplication is performed. These dif-
ferences can sometimes be visualized by plotting the power trace which shows
the power consumed during each clock cycle. Hence, examination of the power
trace of the operation Hd mod N can reveal the sequence of multiplication and
squaring operations and thus the private key d.

One way to counteract this attack is to insert dummy operations as follows
so that one squaring and one multiplication are performed during each iteration
of the main loop:

1. S0 ← 1.

2. For i from 0 to l do
S1 ← S0 ·H mod N .
S0 ← Sdi .
H ← H2 mod N .

3. Return(S0).
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This countermeasure decreases efficiency and, moreover, may still allow other
side-channel attacks. The development of cost-effective and efficient counter-
measures to side-channel attacks is an ongoing research problem that is being
tackled by both cryptographers and engineers.

3.5 Deployment

RSA is the most widely deployed public-key cryptosystem today. A common
everyday use of RSA is in the Secure Sockets Layer (SSL) protocol that is used
by popular browsers such as Netscape and Internet Explorer for secure web
transactions such as credit card payments. SSL is used to assure an individual
user (called a client) of the authenticity of the web site (called the server)
he or she is visiting, and to establish a secure communications channel for the
remainder of the session. Web pages that are protected with SSL have addresses
that start with “https”. Web pages with addresses that start simply with “http”
are not protected.

When a client first visits a secured web page (e.g., https://www.nsa.gov),
the server transmits its certificate to the client. Such a certificate has two com-
ponents, a data part containing the server’s identifying information and RSA
public key, and a signature part which is the RSA signature of a certifying au-
thority that vouches for the data part. It is assumed that the certifying authority
has carefully verified the server’s identity before issuing the certificate. Upon
receipt of the certificate, the client verifies the signature using the certifying
authority’s public key, which is pre-installed in the browser. A successful veri-
fication confirms the authenticity of the server and of its RSA public key. Note
that while the server is authenticated to the client, there is no authentication of
the client to the server. SSL does have client-to-server authentication capability,
but this is seldom used in practice because it is difficult to implement a system
to certify the public keys of individual users on a large scale.

Next, the client selects a random session key, encrypts it with the server’s
RSA public key, and transmits the resulting ciphertext to the server. The server
decrypts the session key, which is then used with a symmetric-key cryptosystem
to encrypt and authenticate all sensitive data exchanged for the remainder of
the session.

The establishment of a secure link is indicated by a closed padlock in the
Netscape and Internet Explorer browsers. Clicking on this icon reveals the
server’s certificate and information about the certifying authority.

4 Knapsack

The knapsack problem, also known as the subset sum problem, is the following:
Given an n-tuple {vi} of positive integers and an integer V , find an n-bit integer

N = (εn−1εn−2 · · · ε1ε0)2, εi ∈ {0, 1}, such that
∑n−1

i=0 εivi = V , if such an N
exists. Note that there may be no solution N or many solutions, or there might
be a unique solution, depending on the n-tuple {vi} and the integer V .
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A special case of the knapsack problem is the superincreasing knapsack. This
is the case when the vi, arranged in increasing order, have the property that
each one is greater than the sum of all of the earlier vi. For example, if vi = 2i,
then the problem is trivial; the unique solution is N = V .

It is known that the general knapsack problem is NP-hard.4 However, any
superincreasing knapsack problem is easy to solve. Namely, we look down the
vi, starting with the largest, until we get to the first one that is ≤ V . We include
the corresponding i in our subset I (in other words, we take εi = 1), replace V
by V − vi, and then continue down the list of vi until we find one that is less
than or equal to this difference. Continuing in this way, either we eventually
obtain a subset of {vi} which sums to V , or else we reach a step where we have
V −

∑
i∈I vi equal to a positive integer less than all of the remaining vi (or equal

to a positive integer when there are no remaining vi), in which case there is no
solution.

We now describe how to construct the basic knapsack cryptosystem of Merkle
and Hellman [51]. We suppose that our plaintext message units are n-bit integers
M . Each user chooses a superincreasing n-tuple {v0, . . . , vn−1}, an integer m

which is greater than
∑n−1

i=0 vi, and an integer a prime to m, 0 < a < m. This
is done by some random process. The user then computes b = a−1 mod m
(that is, b is the least positive integer such that ab ≡ 1 (mod m)), and also
computes the n-tuple {wi} defined by wi = avi mod m (that is, wi is the least
positive residue of avi modulo m). The user keeps the numbers vi, m, a, and
b all secret, but publishes the n-tuple of wi. That is, the enciphering key is
KE = {w0, . . . , wn−1}. The deciphering key is KD = (b,m) (which, along with
the enciphering key, enables one to determine {v0, . . . , vn−1}).

Someone who wants to send a message M = (εn−1 · · · ε1ε0)2 to a user with

enciphering key {wi} computes C = f(M) =
∑n−1

i=0 εiwi, and transmits that
integer. To decipher the message, the recipient first finds the least positive
residue V of bC modulo m. Since bC =

∑
εibwi ≡

∑
εibavi ≡

∑
εivi (mod m),

it follows that V =
∑

εivi. (Here we are using the fact that both V < m and∑
εivi ≤

∑
vi < m to convert the congruence modulo m to equality.) It is

then easy to find the unique solution (εn−1 · · · ε0)2 = M of the superincreasing
knapsack problem.

Note that an eavesdropper who knows only {wi} is faced with the knapsack
problem C =

∑
εiwi, which is not a superincreasing problem, because the su-

perincreasing property of the n-tuple of vi is destroyed when vi is replaced by the
least positive residue of avi modulo m. Thus, at first glance, the unauthorized
person seems to be faced with a much harder problem.

For a while, many people were optimistic about the possibilities for the
Merkle–Hellman knapsack. Encryption and decryption are fast — much faster
than in RSA. Moreover, they hoped that, since the problem of solving a knapsack

4This means that any problem P in a very broad class can be reduced to the general
knapsack problem. Roughly speaking, any algorithm for the knapsack can be modified to
get an equally efficient algorithm for P. If there were a polynomial-time algorithm for the
knapsack problem, then any such problem P would also be solvable in polynomial time, and
the famous P 6= NP conjecture would be false.
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is NP-hard, the system should be secure.
However, there was a fallacy in that reasoning. The type of knapsack prob-

lem C =
∑

εiwi that must be solved, while not a superincreasing knapsack, is
nevertheless of a very special type, namely, it is obtained from a superincreasing
problem by a simple modular multiplication. In 1982, Shamir [108] found an
algorithm to solve this type of knapsack problem that is polynomial in n. Thus,
the original Merkle–Hellman cryptosystem is completely insecure.

One way around Shamir’s algorithm is to make the knapsack system a little
more complicated by using a sequence of transformations of the form x 7→
ax mod m for different a and m. However, Brickell [22] generalized Shamir’s
attack to all such “low-density” knapsacks (see also [23] and [89]).

A few years later Chor and Rivest [27] developed a type of knapsack cryp-
tosystem that did not use low-density knapsacks and remained unbroken for a
decade. The Chor–Rivest system is based on the multiplicative structure of the
finite field Fpm of pm elements, where one might choose, for example, p = 197,
m = 24. Alice’s public key {w1, . . . , wn} that Bob uses to encipher an n-bit mes-
sage {ε1, . . . , εn} is obtained as follows (here we give a simplified version of the
actual construction). Alice represents elements of Fpm = Fp[X]/f(X), where
f(X) is a fixed irreducible polynomial of degree m, as polynomials of degree less
than m. Let g be a generator of F∗pm , and let π be a fixed secret permutation
of {1, . . . , n}. Then for i = 1, . . . , n Alice lets wi, 1 ≤ wi < q − 1, be integers
such that gwi = X + π(i) in Fp[X]/f(X). Bob encrypts a message by setting
C =

∑
εiwi, and Alice decrypts by factoring the polynomial gC =

∏
(X+π(i))εi

in Fp[X]. Although the cryptosystem seemed much harder to attack than the
low-density knapsack systems, in 1998 it was broken by Vaudenay [119].

Shamir’s complete breaking of the original Merkle–Hellman knapsack in 1982
was a jolting experience for the nascent academic cryptographic research com-
munity of the time. A promising public-key system, which was more efficient
than RSA and seemingly more secure as well (since RSA is not based on an
NP-hard problem), was totally demolished by Shamir’s paper four years after
it was invented. And subsequent attempts to rescue the knapsack idea fared no
better.

There are at least two general lessons to be learned here. First, when a
proposer’s original version of a cryptosystem is successfully attacked, often it is
futile to thwart this attack by tweaking the system a little — by changing the
parameters or inserting a new layer of complexity. The success of the attack
possibly indicates a fundamental weakness in the system, in which case modified
versions will succumb to variants or generalizations of the original attack.

A second lesson is to be skeptical of theoretical arguments for the security of a
system. Concepts of complexity theory such as NP-hardness do not necessarily
have direct relevance to cryptography. Since the time of the ancient Greeks,
our model of mathematical elegance has been a rigorously proved theorem.
However, in cryptography such theoretical results — often appearing with the
name “provable security”5 — are sometimes less convincing than a decade or

5Lars Knudsen once commented that “If it’s provably secure, then it probably isn’t.”
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two of computational experience attempting unsuccessfully to break a system.

5 Discrete Logarithm Cryptosystems

Another type of public-key cryptographic system is based on the discrete log-
arithm problem (DLP) in a finite field. Let Fq denote the field of q elements,
and let g ∈ F∗q be a fixed element, not necessarily a generator. The discrete
log problem in F∗q to the base g is the following problem: Given y ∈ F∗q , find
an integer x such that y = gx (or, if y is not in the subgroup generated by
g, determine that no such integer exists; but in cryptographic applications y is
always a power of g).

5.1 The Diffie-Hellman key exchange

The Diffie-Hellman key exchange [32] works as follows. Suppose that Alice
and Bob want to agree upon a key, perhaps for use in some symmetric-key
cryptosystem. This must be done using open communication channels. That is,
an eavesdropper Eve knows everything that Alice sends to Bob and everything
that Bob sends to Alice.

Alice and Bob first agree on a finite field Fq and a base element g of order N ,
where N |q−1. Their communication is public, so Eve also has this information.
Next, Alice secretly chooses a random positive integer kAlice < N , computes
gkAlice ∈ F∗q , and sends this to Bob. Meanwhile, Bob does likewise: he sends

gkBob ∈ F∗q to Alice, while keeping kBob secret. The agreed upon key will then
be the element

gkAlicekBob ∈ F∗q ,

which Bob can compute by raising the field element he received from Alice to
his secret kBob-th power, and Alice can compute by raising the field element she
received from Bob to the kAlice-th power. This works because in F∗q we have

gkAlicekBob =
(
gkAlice

)kBob
=
(
gkBob

)kAlice
.

In this way Alice and Bob have arrived at a common randomly generated
element of the subgroup of F∗q generated by g. If they want their key to be a
large integer or sequence of bits, they can agree upon a simple function from Fq

to the integers that will convert the shared key to the desired form.
The problem facing the adversary Eve is the so-called Diffie-Hellman prob-

lem: Given g, gkA , gkB ∈ F∗q , find gkAkB . It is easy to see that anyone who
can solve the discrete log problem in F∗q can then immediately solve the Diffie-
Hellman problem as well. The converse is not known. That is, it is conceivable
(though thought to be unlikely) that someone could invent a way to solve the
Diffie-Hellman problem without being able to find discrete logarithms. In other
words, breaking the Diffie-Hellman key exchange has not been proven to be
equivalent to solving the discrete log problem. For partial results supporting
the conjectured equivalence of the two problems, see [19] and [80]. In practice
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it is probably safe to assume that the Diffie-Hellman key exchange is secure
provided that the discrete logarithm problem is intractable.

Because of the Pohlig-Hellman algorithm [94], the order N of the base ele-
ment should be either prime or “almost prime” (the product of a prime and a
very small integer).

5.2 The Digital Signature Algorithm (DSA)

In 1991 the U.S. government’s National Institute of Standards and Technol-
ogy proposed a digital signature standard using a Digital Signature Algorithm
(DSA) based on the discrete log problem in a prime field Fp.

To set up the scheme, each user Alice proceeds as follows:

1. she chooses a primeN of about 160 bits (using a random number generator
and a primality test);

2. she then chooses a second prime p that is congruent to 1 modulo N and
has at least 1000 bits;

3. she chooses a generator g of the cyclic subgroup of F∗p of order N (by

computing g
(p−1)/N
0 mod p for a random integer g0; if this number is not

equal to 1, it will be a generator);

4. she takes a random integer x in the range 0 < x < N as her secret key,
and sets her public key equal to y = gx mod p.

Now suppose that Alice wants to sign a message. Using a hash function that
takes positive integer values less than N , she computes the hash value H of her
message. She next picks a random integer k in the same range 0 < k < N ,
computes gk mod p, and sets r equal to the least nonnegative residue modulo
N of the latter number (that is, gk is first computed modulo p, and the result,
regarded as an integer in {0, 1, . . . , p − 1}, is then reduced modulo the smaller
prime N). Finally, Alice finds an integer s such that sk ≡ H + xr (mod N).
(This just involves multiplying the number on the right by the inverse of k
modulo N .) Her signature is the pair (r, s) of integers modulo N .

To verify the signature, the recipient Bob computes the hash value H and
then u1 = s−1H mod N and u2 = s−1r mod N . He then computes gu1yu2 mod
p. If the result agrees modulo N with r (as it should, since gu1+xu2 = gk), he
is satisfied. He accepts the signature because he is confident that only someone
who knew Alice’s secret key x — presumably, this means only Alice — could
have formed the signature. He also knows that the message has not been tam-
pered with, since the hash value H of the message he received is the same as
the hash value of the message that Alice sent.

The only way known to forge a DSA signature is to find discrete logs in F∗p.
This requires roughly the same amount of time as factoring a positive integer
that has the same size as p. In fact, the fastest method available at present to
solve the DLP in Fp is a variant of the same technique — the number field sieve
— that can factor the largest integers [47].
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The DSA has the advantage that signatures are fairly short, consisting of two
numbers of 160 bits (the magnitude of N). By comparison, the RSA signature
in §3.1 is about three times as long. The security of the system depends upon
intractability of the discrete log problem in the multiplicative group of the rather
large field Fp. Although to break the system it would suffice to find discrete
logs in the smaller subgroup generated by g, in practice this seems to be no
easier than finding arbitrary discrete logarithms in F∗p. Thus, the DSA seemed
to have attained both a high level of security and low signature storage and
implementation time. However, recently the DSA has been superseded by the
ECDSA, which is a similar system based on the group of an elliptic curve rather
than a finite field. This signature scheme will be described in the next section.

6 Elliptic Curve Cryptography

Elliptic curves have been extensively studied for almost two centuries, and there
is a vast literature on the topic. Research into number theoretic questions
concerning elliptic curves was originally pursued mainly for aesthetic reasons.
But in recent decades such questions have become important in several applied
areas, including coding theory, pseudorandom number generation, and integer
factorization.

In 1985, Koblitz [62] and Miller [85] independently proposed using the group
of points on an elliptic curve defined over a finite field in discrete log cryptosys-
tems. The primary advantage that elliptic curve systems have over systems
based on the multiplicative group of a finite field (and also over systems based
on the intractability of integer factorization) is the absence of a subexponential-
time algorithm (such as those of index calculus type) that could find discrete
logs in these groups. Consequently, one can use an elliptic curve group that
is smaller in size while maintaining the same level of security. The result is
potentially smaller key sizes, bandwidth savings, and faster implementations,
features which are especially attractive for security applications where compu-
tational power and integrated circuit space are limited, such as smart cards and
wireless devices.

6.1 Background on elliptic curves

Assume first that F is a field of characteristic not equal to 2 or 3. An elliptic
curve E over F is an equation

y2 = x3 + ax+ b, (1)

where a, b ∈ F and 4a3 + 27b2 6= 0 (the latter condition ensures that the cubic
on the right does not have multiple roots). If K is a field containing F, then the
set of K-points of E, denoted E(K), consists of all solutions (x, y) ∈ K × K of
equation (1) together with a special point ∞ called the point at infinity.

It is well known that E(K) is an (additively written) abelian group with
the point ∞ serving as its identity element. The rules for group addition are
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summarized below.

Addition Formulas for the Curve (1)

If P = (x1, y1) ∈ E, then −P = (x1,−y1). If Q = (x2, y2) ∈ E, Q 6= −P , then
P +Q = (x3, y3), where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1,

and

λ =





y2 − y1

x2 − x1
if P 6= Q

3x2
1 + a

2y1
if P = Q.

There is a nice classical way — called the chord and tangent construction
— to visualize the group law on an elliptic curve defined over the real numbers.
We illustrate with the elliptic curve y2 = x3 − x, pictured in Figure 1.

PSfrag replacements

R = (x3, y3)

x

y

P = (x1, y1)

Q = (x2, y2)

(a) Addition: P +Q = R.

PSfrag replacements

R = (x3, y3)

x

y

P = (x1, y1)

(b) Doubling: P + P = R.

Figure 1: Geometric addition and doubling of elliptic curve points.

To add two points P and Q, we draw a chord between them and find its
third point of intersection with the curve. The point R symmetric to this point
with respect to the x-axis is the sum P +Q. If Q = P , then instead of a chord
we take the tangent line to the curve at P .

For k a positive integer and P a point we use the notation kP to denote P
added to itself k times.
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If F is a field of characteristic 3, then we have an equation similar to (1)
but with an x2-term which cannot be eliminated by a linear change of variables.
The formulas for point addition are similar to the ones above.

Elliptic curves defined over a finite field are of two types. Most are what are
called ordinary or non-supersingular curves, but a small number are supersin-
gular. If F is a field of characteristic 2, then a supersingular elliptic curve E is
an equation

y2 + cy = x3 + ax+ b,

where a, b, c ∈ F, c 6= 0, together with the point at infinity ∞; and a non-
supersingular elliptic curve E is an equation

y2 + xy = x3 + ax2 + b,

where a, b ∈ F, b 6= 0, together with the point at infinity∞. In both cases, E(K)
for any K ⊃ F is an abelian group with the point∞ serving as the identity. The
addition formulas for the two types of curves in characteristic 2 are similar to
the ones given above for equation (1).

If E is defined over a finite field Fq, then E(Fq) is a finite abelian group of
rank 1 or 2; in other words, either it is cyclic or else a product of two cyclic
groups. We have E(Fq) ∼= Cn1

⊕Cn2
, where Cn denotes a cyclic group of order

n, n2 divides n1, and furthermore n2|q−1. A well-known theorem of Hasse (see
[111], p. 131) states that the cardinality #E(Fq) = q + 1− t, where |t| ≤ 2

√
q.

We call [q+1− 2
√
q, q+1+2

√
q] the Hasse interval. The curve E is said to be

supersingular if t2 = 0, q, 2q, 3q, or 4q; otherwise the curve is non-supersingular.
When q is a power of 2, this agrees with the definition given earlier. In that

case #E(Fq) is odd if E is supersingular and even if E is non-supersingular.
A result of Waterhouse [122] states that if q is a prime, then for each t

satisfying |t| ≤ 2
√
q there exists at least one elliptic curve E defined over Fq

with #E(Fq) = q + 1 − t. If q is a power of 2, then for each even t satisfying
|t| ≤ 2

√
q there exists at least one (non-supersingular) elliptic curve E defined

over Fq with #E(Fq) = q+1− t. Schoof [106] derived a formula for the number
of isomorphism classes of elliptic curves defined over Fq with #E(Fq) = q+1− t
for each t satisfying |t| ≤ 2

√
q.

Example 2 (elliptic curve over F11). Consider the elliptic curve E : y2 =
x3 + 2x + 4 defined over F11. Then #E(F11) = 17, and E(F11) is cyclic. A
generator of E(F11) is P = (0, 2). The points in E(F11), expressed as multiples
of P , are shown below:

P = (0, 2) 2P = (3, 2) 3P = (8, 9) 4P = (6, 1) 5P = (9, 5)
6P = (7, 3) 7P = (2, 4) 8P = (10, 10) 9P = (10, 1) 10P = (2, 7)
11P = (7, 8) 12P = (9, 6) 13P = (6, 10) 14P = (8, 2) 15P = (3, 9)
16P = (0, 9) 17P =∞

6.2 Elliptic curve cryptosystems

Discrete log cryptosystems were first described in the setting of the multiplica-
tive group of the integers modulo a prime p. Such systems can be modified
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to work in the group of points on an elliptic curve.6 For instance, the Diffie-
Hellman key exchange can be adapted for elliptic curves as follows. First note
that a random point on an elliptic curve E can serve as a key, since Alice and
Bob can agree in advance on a method to convert it to an integer (for example,
they can take the image of its x-coordinate under some agreed upon simple map
from Fq to the natural numbers).

So suppose that E is an elliptic curve over Fq, and P is a publicly known
point on the curve. Alice secretly chooses a random integer kA and computes
the point kAP , which she sends to Bob. Likewise, Bob secretly chooses a ran-
dom kB , computes kBP , and sends it to Alice. The common key is Q = kAkBP .
Alice computes Q by multiplying the point she received from Bob by her se-
cret kA; Bob computes Q by multiplying the point he received from Alice by
his secret kB . An eavesdropper who wanted to spy on Alice and Bob would
have to determine Q = kAkBP knowing P , kAP , and kBP , but not kA or
kB . The eavesdropper’s task is called the elliptic curve Diffie-Hellman problem
(ECDHP).

It is not hard to modify this Diffie-Hellman key exchange protocol for the
purpose of message transmission, using an idea of ElGamal [34]. Suppose that
the set of message units has been imbedded in E in some agreed upon way, and
Bob wants to send Alice a message M ∈ E. As in Diffie-Hellman, Alice has
already randomly generated a secret key kA and computed her public key kAP .
Bob now chooses another secret random integer l and sends Alice the pair of
points (lP,M+l(kAP )). (Notice that ElGamal encryption is probabilistic rather
than deterministic.) To decipher the message, Alice multiplies the first point in
the pair by her secret kA and then subtracts the result from the second point
in the pair.

We next describe the elliptic curve digital signature algorithm (ECDSA),
which is analogous to the DSA in §5.2.

ECDSA key generation

E is an elliptic curve defined over Fq, and P is a point of prime order N in
E(Fq); these are system-wide parameters. For simplicity, we shall suppose that
q is a prime, although the construction can easily be adapted to a prime power
q as well. Each user Alice constructs her keys by selecting a random integer x
in the interval [1, N − 1] and computing Q = xP . Alice’s public key is Q; her
private key is x.

ECDSA signature generation

To sign a message having hash value H, 0 < H < N , Alice does the following:

1. She selects a random integer k in the interval [1, N − 1].

6Or, indeed, in any finite group. However, such a discrete log cryptosystem is worth
considering only if there is reason to believe that it is safe from attack; see §6.3.
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2. She computes kP = (x1, y1) and sets r equal to the least nonnegative
residue of x1 mod N (where x1 is regarded as an integer between 0 and
q−1). (Note: If r = 0, then she must go back to step 1 and select another
k.)

3. She computes k−1 mod N and sets s equal to the least nonnegative residue
of k−1(H+xr) mod N . (Note: If s = 0, then she must go back to step 1.)

The signature for the message is the pair of integers (r, s).

ECDSA signature verification

To verify Alice’s signature (r, s) on a message, Bob should do the following:

1. Obtain an authenticated copy of Alice’s public key Q.

2. Verify that r and s are integers in the interval [1, N −1], and compute the
hash value H of the message.

3. Compute u1 = s−1H mod N and u2 = s−1r mod N .

4. Compute u1P +u2Q = (x0, y0) and, regarding x0 as an integer between 0
and q − 1, set v equal to the least nonnegative residue of x0 mod N .

5. Accept the signature if and only if v = r.

Notice that if Alice generated her signature correctly, then u1P + u2Q =
(u1 + xu2)P = kP because k ≡ s−1(H + xr) (mod N), and so v = r.

To obtain a security level similar to that of DSA, the parameter N should
have about 160 bits. If this is the case, then DSA and ECDSA signatures have
the same bitlength (320 bits). The main advantage of ECDSA over DSA is that
operations are performed in a much smaller field Fq.

Instead of using the same elliptic curve for everyone, we could fix the un-
derlying finite field Fq for all users and let each select her own elliptic curve E
and point P ∈ E(Fq). In this case, the coefficients of the defining equation for
E, the point P , and the order N of P must also be included in a user’s public
key. If the underlying field Fq is fixed, then hardware or software can be built to
optimize computations in that field. At the same time, there are an enormous
number of choices of elliptic curves E over the fixed Fq.

6.3 Security

The basis for the security of elliptic curve cryptosystems such as ECDSA and
ElGamal encryption is the apparent intractability of the following elliptic curve
discrete logarithm problem (ECDLP): Given an elliptic curve E defined over Fq,
a point P ∈ E(Fq) of order N , and a point Q ∈ E(Fq), determine the integer x,
0 ≤ x ≤ N − 1, such that Q = xP , provided that such an integer exists.

The Pohlig-Hellman algorithm [94] reduces the determination of x to the
determination of x modulo each of the prime factors of N . Hence, in or-
der to achieve the maximum possible security level, N should be prime. The
best general-purpose algorithm known to date for the ECDLP is the Pollard
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ρ-method [95], which takes fewer than N 1/2+ε = 2(1/2+ε)n steps if N is an n-bit
prime. We now describe this method.

Given P and Q in a cyclic order-N subgroup G ⊂ E(Fq), we want to find x
such that Q = xP . First, partition G = S1 ∪ S2 ∪ S3 randomly into three sets
of roughly equal size. Select X0 = a0P + b0Q with random a0, b0.

Construct a recursive sequence of points

Xi+1 =





Q+Xi if Xi ∈ S1;

2Xi if Xi ∈ S2;

P +Xi if Xi ∈ S3;

and recursive sequences of integers

ai+1 =





ai if Xi ∈ S1;

2ai if Xi ∈ S2;

ai + 1 if Xi ∈ S3;

and

bi+1 =





bi + 1 if Xi ∈ S1;

2bi if Xi ∈ S2;

bi if Xi ∈ S3.

Then Xi = aiP+biQ for all i. The idea is that this sequence eventually becomes
periodic. Figure 2 shows how the ρ-method got its name.

X1

X3

Xt+s+2
Xt+2

Xt+1

Xt+s+3

Xt+4

Xt+s−2

Xt−1

Xt+3

Xt+s+1
Xt+s

Xt

Xt+s+4

X2

X0

Xt+s−1

Figure 2: ρ-like shape of the sequence {Xi} in the Pollard ρ-method, where t =
tail length and s = cycle length.

Once we find i and j such that Xi = Xj we have

Xi = aiP + biQ = (ai + xbi)P = Xj = (aj + xbj)P,
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and hence
ai + xbi ≡ aj + xbj (mod N),

from which x mod N can immediately be determined (except in the very unlikely
event that bi ≡ bj (mod N)).

In order to greatly reduce storage, in practice one looks for a match between
Xi and X2i. This slightly increases the running time, but reduces the storage
almost to zero. It was a crucial observation (due to Pollard) that the search for
a match between Xi and Xj — which would require storage of order O(

√
N)

— can be replaced for a search for a match between Xi and X2i. Otherwise,
the ρ-method would have been no better than an earlier deterministic matching
method of D. Shanks called “baby step – giant step” that takes roughly the
same amount of time and requires O(

√
N) storage.

Assuming that the above map from Xi to Xi+1 behaves like a random map-
ping, a match can be found by the time i reaches O(

√
N). Much research has

been devoted to improving the Pollard-ρ method (see for example, [117]). The
general form of the estimate for the number of steps remains O(

√
N) even after

all the modifications. Thus, the aim of this work is to reduce the constant in
O(
√
N).

For certain elliptic curves ECDLP algorithms have been found that are faster
than Pollard-ρ. The Weil and Tate pairings can be used to embed the group
E(Fq) in the multiplicative group of the field Fqk for some integer k (see [81]
and [37]). This reduces the ECDLP in E(Fq) to the discrete logarithm problem
(DLP) in F∗qk . A necessary condition for a cyclic subgroup of E(Fq) of order N

to be embedded in F∗qk is that N divide qk − 1.
Once the ECDLP has been replaced by the DLP in F∗qk , we can hope to use

an index calculus algorithm with subexponential running time 2n
1/3+ε

, where
n = log2(q

k). See Coppersmith [29] for the case of even q, and Gordon [47]
and Schirokauer [104] for the case when q is a prime and k = 1. No algorithm
with this running time is known when q is odd and k > 1, but we adopt the
“optimistic” supposition that the above time estimate can be achieved for the
discrete logarithm problem in Fqk for all q and k ≥ 1. Even with this suppo-

sition, k must be less than log2 q, since otherwise the index calculus algorithm
for Fqk will take fully exponential time in log q.

For the very special class of supersingular curves, it is known that k ≤
6. For these curves the reduction using the Weil and Tate pairing gives a
subexponential-time algorithm for the ECDLP. However, a randomly generated
elliptic curve has an exponentially small probability of being supersingular; and,
as shown in [65] (see also [6]), for most randomly generated elliptic curves we
have k > log2 q.

In addition, if the elliptic curve is defined over a prime field Fp and E(Fp)
happens to have cardinality exactly equal to p, then Satoh-Araki [102], Semaev
[107], and Smart [114] showed how to imbed the elliptic curve group into the
additive group of integers mod p and thereby solve the ECDLP very quickly.

No subexponential-time algorithm is known for the ECDLP except for the
special classes discussed above. Miller [85] (see also [113]) discusses the index
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calculus method (see §3.2) as it might apply to elliptic curve groups. He com-
ments that unlike in the case of F∗q , where there are natural candidates for the
factor base (prime numbers of small size or small degree irreducible polyno-
mials), there appear to be no likely candidates in E(Fq). When q is a prime
the most natural ones might come from reduction modulo q of points of small
height in Ẽ(Q), Q the field of rational numbers, for some “lifting” Ẽ of E. (The
height of a point is related to the number of bits needed to represent the point.)
However, Miller points out that there are very few points of small height in
Ẽ(Q). Furthermore, even if such a factor base can be found, finding an efficient

method for lifting a point in E(Fq) to a point in Ẽ(Q) looks hopeless.
In 1998 J. Silverman [112] proposed a clever variant on index calculus at-

tacks. His method reversed the order of the stages in index calculus, and for
that reason he called it “xedni calculus” (“index” spelled backwards). This
technique to solve the ECDLP was analyzed in [58] and found to be far slower
than the Pollard-ρ method.

In certain cases when q = 2m with composite extension degree m = ln, it
is possible to solve the ECDLP faster by means of the so-called Weil descent
method than by Pollard-ρ. The idea of Weil descent, which is due to G. Frey, is
to convert the DLP on an elliptic curve over F2ln to the DLP on the jacobian of
a genus-g curve defined over F2l . This approach has been investigated system-
atically in [41, 82, 59, 79, 52, 83]. The vast majority of elliptic curves cannot
be attacked using these methods, and one can avoid Weil descent entirely by
working over prime fields or fields of 2m elements with m prime.

Recently Gaudry [40] used an index-calculus approach to solve the ECDLP
on a curve defined over a field of order q = pm where m is composite. His
method is asymptotically faster than the Pollard-ρ method when m is divisible
by a small number greater than 2. For example, if 3|m, then the running time
of Gaudry’s algorithm is O(p10m/21+ε), whereas the Pollard-ρ method has a
running time of O(pm/2+ε).

Strictly speaking, the security of elliptic curve cryptographic systems is usu-
ally based on the assumed intractability of a problem that is slightly weaker
than the ECDLP. For example, security of the elliptic curve Diffie-Hellman key
agreement protocol relies on the presumed intractability of the elliptic curve
Diffie-Hellman problem (ECDHP; see §6.2). Clearly ECDHP polynomial-time
reduces to ECDLP. Boneh and Lipton [19] proved a partial converse: if the
ECDLP cannot be solved in subexponential time, then neither can ECDHP.

6.4 Selecting an appropriate elliptic curve

By an “appropriate” elliptic curve, we mean an elliptic curve E defined over a fi-
nite field Fq where the ECDLP in E(Fq) resists all known attacks. In particular,
the following conditions should be satisfied:

(i) To resist the Pollard-ρ attack #E(Fq) should be divisible by a sufficiently
large prime N (for example, N > 2160).
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(ii) To resist the Weil and Tate pairing attacks, N should not divide qk − 1
for all 1 ≤ k ≤ C, where C is large enough so that it is computationally
infeasible to find discrete logarithms in F∗qC . (C = 20 suffices in practice.)

(iii) If q is prime, then #E(Fq) must not equal q.

Below we give an overview of three techniques for selecting an appropriate
curve.

Using Hasse’s theorem

Here one uses a curve over Fq that is actually defined over a much smaller
subfield Fq0 .

If E is an elliptic curve defined over Fq0 , then E can be viewed as an elliptic
curve over any extension Fqm0

of Fq0 , and E(Fq0) is a subgroup of E(Fqm0
).

Hasse’s theorem enables one to compute #E(Fqm0
) from #E(Fq0) as follows.

Let t = q0 + 1−#E(Fq0). Then #E(Fqm0
) = qm0 + 1− αm − βm, where α and

β are complex numbers determined from the factorization of 1 − tT + q0T
2 =

(1− αT )(1− βT ).
This method is most commonly used when q is a power of 2. In that case

we first pick an elliptic curve over a small field F2` , compute #E(F2`) (which is
easy to do by exhaustive counting), and then use Hasse’s theorem to determine
#E(Fq) for q = 2m` for m in an appropriate range (in practice we want m` >
160). If conditions (i) and (ii) above (with q = 2m`) are not satisfied for any m
in the desired range, then another curve is selected and the process is repeated.
Since the number of elliptic curves over F2` is relatively small, it may not be
possible to construct the desired curve using this method.

Koblitz [66] observed that if one uses k of small Hamming weight (that is,
its binary expansion has mostly zero-bits) when computing kP , then one gets
doubling of points “almost 3/4 for free” for some anomalous curves over F2l .

7

In [115] Solinas showed how to compute kP very efficiently for arbitrary k on
an anomalous curve defined over F2.

The complex multiplication method

The method of complex multiplication (CM) allows the choice of an elliptic
curve order before the curve is explicitly constructed. Thus, orders can be
generated so as to satisfy conditions (i) – (iii); a curve is constructed only when
these conditions are met. For elliptic curves over Fp, the CM method is also
called the Atkin-Morain method (see [87]); over F2m , it is called the Lay-Zimmer
method (see [71]).

The CMmethod generates elliptic curves of a special sort: the values of |t| are
very close to their upper limit 2

√
q, and the curves have complex multiplication

by a small discriminant. While it is conceivable that this feature may render
these curves cryptographically insecure, it must be stressed that no attack is
currently known that takes advantage of this structure.

7An elliptic curve over Fq is said to be anomalous if t = 1, or equivalently, if #E(Fq) = q.
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Choosing a curve at random

Another approach to selecting an appropriate elliptic curve E over Fq is to select
random coefficients a, b ∈ Fq of the equation of E (subject to the constraint that
4a3 + 27b2 6= 0 if q is odd, and b 6= 0 if q is even). One then computes #E(Fq)
and factors this number. This process is repeated until conditions (i) – (iii) are
satisfied.

In the case of elliptic curves over a prime field Fq, a theorem of Lenstra [75]
shows that, if the coefficients a and b are selected uniformly at random, then
the orders of the resulting elliptic curves are roughly uniformly distributed in
the Hasse interval [q + 1 − 2

√
q, q + 1 + 2

√
q]. Similar results for the case of

elliptic curves over F2m can be deduced from the work of Waterhouse [122] and
Schoof [106].

With condition (i) in mind, we shall say that a positive integer u is B-almost
prime if it is divisible by a prime greater than u/B. For fixed B and large q, it
is reasonable to assume that the probability of B-almost primality of the order
of a randomly chosen elliptic curve over Fq is roughly equal to the probability
of B-almost primality of a random integer of the same order of magnitude as
q. If q is even, then one considers random even integers of the same order of
magnitude as q. For example, if q = 2173 and we want an elliptic curve whose
order is divisible by a prime N > 2160 (so B = 213), we expect to try about 14
curves before finding one whose order is B-almost prime.

In 1985 Schoof [105] found a polynomial-time algorithm for computing the
number of Fq-points on an elliptic curve defined over Fq in the case when q is
odd; the algorithm was later extended to the case of even q in [64]. Schoof’s algo-
rithm has a worst-case running time of O((log q)8) bit operations, and is rather
inefficient in practice. However, in recent years much faster point-counting algo-
rithms have been developed, including the Schoof-Elkies-Atkin (SEA) algorithm
(see [13, Ch. VII] and [57]) for elliptic curves over prime fields, and Satoh’s al-
gorithm [101, 36, 103] and the AGM method (see [39]) for elliptic curves over
characteristic two finite fields.

6.5 A signature scheme based on the Weil pairing

We conclude this section by describing a signature scheme that, unlike ECDSA,
depends in an essential way on properties of elliptic curves that do not have
analogues in the multiplicative group of a finite field. It is one of the very few
elliptic curve cryptosystems that were not developed by analogy with earlier
cryptosystems.8 The signature scheme uses elliptic curves that have the un-
usual property that, while the Diffie-Hellman problem (see §6.2) is hard, the
decisional Diffie-Hellman problem — the problem of determining whether or
not the discrete log of a point is equal to the product of the discrete logs of two

8Other cryptographic protocols that also make crucial use of the Weil and Tate pairings
include the three-party one-round key agreement protocol of Joux [61] and the identity-based
public-key encryption scheme of Boneh and Franklin [18]. The idea of this type of use of the
pairings first appeared in [100].
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other points — is easy.
Let us consider the simple equation

y2 = x3 − x

over the prime field Fp, p 6= 2. When p ≡ 3 (mod 4) this curve is supersingular
— it is an easy exercise to show that the curve has exactly p+1 points (including
∞). We get a non-supersingular curve when p ≡ 1 (mod 4). In the non-
supersingular case, a formula for the number of points was discovered by Gauss.
Namely, write p = A2 + B2 as a sum of two squares, with A and B chosen so
that A is odd and A+B ≡ 1 (mod 4). (This is a very easy computational task.)
Then the curve has p+ 1− 2A points. If this number is almost prime (that is,
equal to a prime number times a small factor), then the curve is suitable for the
ECDSA and other cryptographic applications.

But it is the other case — when p ≡ 3 (mod 4) — that can be used for the
signature scheme described below. Since −1 is a nonsquare in Fp, by adjoining a
squareroot i of −1 we get the field of p2 elements Fp2 . It is not hard to see that
our curve has (p+1)2 points over this larger field. Moreover, if P = (u, v) 6=∞
is an Fp-point, then the map P 7→ P̃ = (−u, iv) takes P to an Fp2-point having
the same order as P . (Notice that if (u, v) satisfies the equation y2 = x3 − x,
then so does (−u, iv).) If P has order N , then there are N 2 Fp2 -points of order

dividing N , namely all linear combinations kP + `P̃ , 0 ≤ k, ` < N .

∞ P 2P

2P̃

P̃

Figure 3: N2 points of order dividing N in E(Fp2). The horizontal axis is in
E(Fp).

There is a bilinear pairing 〈 , 〉, called the Weil pairing, on this set of N 2

points of order N , such that 〈P, P̃ 〉 = ζ, where ζ is a primitive N -th root of
unity in Fp2 . (Notice that since N divides p+1, it also divides p2−1, and so Fp2

contains a primitive N -th root of unity.) This pairing is not hard to compute
[86].

As mentioned in §6.3, in the early 1990’s it was noticed that in this situation
it is easy to transform the ECDLP to the DLP in the field Fp2 . Namely, if
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Q = xP is the Fp-point whose discrete logarithm x you want to find, it follows

from the bilinearity of the Weil pairing that 〈Q, P̃ 〉 = 〈xP, P̃ 〉 = ζx. Thus, the
problem of finding the discrete log of Q to the base P on the curve is equivalent
to the problem of finding the discrete log of 〈Q, P̃ 〉 to the base ζ in Fp2 . This
means that for an n-bit prime p the ECDLP on this curve can be solved in time

2n
1/3+ε

using the number field sieve instead of the Pollard-ρ method, which
would take time 2( 1

2
+ε)n. (Here we are again supposing that the number field

sieve will be improved for extension fields such as Fp2 so as to achieve the same
order of running time as for prime fields; currently it is slower on extension
fields.) For adequate security one would need to use roughly 500-bit primes p
rather than 160-bit primes p as in the case of non-supersingular elliptic curves.
For this reason one might think that these supersingular curves are of no use in
cryptography.

But interestingly, it is precisely the supersingular curves that are needed for
the “short signature” scheme devised by Boneh, Lynn, and Shacham [20]. This
signature scheme relies in an essential way on the Weil pairing, which is not
an analogue of anything that is available for the multiplicative group of a finite
field.

Here is how the Boneh-Lynn-Shacham signature scheme works on the curve
y2 = x3 − x over Fp, p ≡ 3 (mod 4). Assume that p has been chosen so that
the discrete log problem in F∗p2 is intractable. However, p is not so large as to
make it difficult to perform arithmetic and compute the Weil pairing in Fp2 .
Suppose that Alice wants to sign a message to Bob that has hash value H,
which is taken to be a point in the subgroup of E(Fp) generated by P (unlike
in the ECDSA, where the hash value is an integer less than N). As in other
elliptic curve systems, Alice’s secret key is a random integer x, and her public
key is the multiple Q = xP of the base point P . Then Alice’s signature is
simply the point S = xH. To verify the signature, Bob computes Q̃ (the image
of Q under the map that takes a point (u, v) to (−u, iv)) and the two pairings

〈H, Q̃〉 and 〈S, P̃ 〉; and he accepts the signature if these two elements of Fp2

are equal. Because of the bilinearity of the Weil pairing, if Alice formed the
signature correctly, then both are equal to 〈H, P̃ 〉x. Bob accepts the signature
because he is confident that only Alice would have been able to find the point
S whose discrete log to the base H is equal to the discrete log of Q to the base
P .

While the implementation of the Boneh-Lynn-Shacham signature requires
only arithmetic in Fp2 , forging a signature requires the ability to solve the Diffie-
Hellman problem on the elliptic curve. Namely, given P , Q and H, the forger
must find a point S whose discrete log to the base P is equal to the product of
the discrete logs of H and Q. The only way known to do this is to solve the
discrete log problem in F∗p2 , and we are assuming that that is not feasible.

There is a relatively small set of elliptic curves on which the Boneh-Lynn-
Shacham signature scheme can be implemented. If the group of points in which
we are working has order N , then the Weil pairing takes values in the N -th
roots of unity, which lie in an extension field Fqk such that N |qk − 1. For most
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elliptic curves, the multiplicative order k of q modulo N has the same order of
magnitude as N , and so it is infeasible to do arithmetic in the gigantic extension
field Fqk — in fact, in practice it is impossible even to store an element of such
a field. In contrast, for the supersingular curve y2 = x3 − x over Fp with p ≡ 3
(mod 4), we have k = 2, and the Weil pairing computations take place in Fp2 .

7 Other Systems Based on Discrete Logarithms

In principle, one can construct a public-key cryptographic system based on the
discrete log problem (DLP) in any group, provided that the DLP is difficult
enough to provide security. In addition to the multiplicative group of finite
fields and elliptic curves defined over finite fields, several other groups have
been considered.

7.1 Hyperelliptic and other curves

For a curve defined over the complex numbers, the genus can be interpreted as
the number of “handles” in the corresponding surface. An elliptic curve can
be represented as a torus (donut-shaped surface), and a genus-5 curve has the
appearance shown in Figure 4.

Figure 4: A Riemann surface with 5 handles.

If the genus g of a curve is greater than 1, then the points on the curve
do not have a natural group law. However, one can consider formal sums of
points modulo the equivalence relation determined by the divisors of functions.
These divisor classes are the elements of the jacobian of the curve, which has
a natural group structure. These groups generalize the group of points on an
elliptic curve.

In general, it is a complicated matter to find good sets of divisor class rep-
resentatives and efficient algorithms for the group law on the divisor classes.
However, hyperelliptic curves — those whose equation has a quadratic polyno-
mial in y on the left side and a polynomial in x of degree 2g + 1 on the right
— are much easier to work with. It was hyperelliptic curve jacobians that were
proposed for use in cryptography in 1989 [63].

The jacobian of a hyperelliptic curve is closely analogous to the ideal class
group of an imaginary quadratic number field. In fact, the rules for the group
law on a hyperelliptic jacobian are very similar to the classical rules developed
by Gauss for composition of binary quadratic forms. This is why hyperelliptic
curves are convenient to work with. On the other hand, the similarity with
class groups also explains why it turned out that for high-genus curves one has
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subexponential-time index calculus algorithms for the DLP on these groups (see
[48, 1]). Even when the genus is just moderately large, namely g ≥ 3, Gaudry
[38] and Thériault [118] showed that index calculus methods to solve the DLP are
asymptotically faster than the Pollard-ρmethod. The running time for Gaudry’s
algorithm on the jacobian of a genus-g curve over Fq is of order q2g/(g+1)+ε,
whereas Thériault’s algorithm has a running time of O(q(4g−2)/(2g+1)+ε). Since
the running time of the Pollard ρ-method is qg/2+ε, it follows that for g ≥ 3 a
hyperelliptic cryptosystem would require greater keylengths than elliptic curve
cryptosystems for the same level of security. Hyperelliptic cryptosystems for
g = 2 have no known security disadvantage compared to elliptic curve systems.
While there have been relatively few practical implementations of hyperellip-
tic cryptosystems, recent work (see [5, 93]) suggests that genus 2 hyperelliptic
curves are only slightly less efficient that their elliptic curve counterparts.

7.2 Class groups

We mentioned that the jacobian group of a hyperelliptic curve is in some ways
similar to the ideal class group of a quadratic number field. Such ideal class
groups themselves have been studied for use in cryptographic protocols in a
series of papers by Buchmann, Williams, and others [26, 25, 11, 24]. In the
case of imaginary quadratic fields they use the usual class group. However, in
the case of real quadratic number fields the class group is not suitable, so they
instead work with what they call an infrastructure, where the composition law
gives only an approximation to a group, not a true group.

7.3 XTR

A special case of the Diffie-Hellman system, proposed by A. K. Lenstra and
E. R. Verheul [74] (see also [46]), has aroused considerable interest. As in §5,
one works in the subgroup G of prime order N in the multiplicative group of
the finite field Fq. We take q = p6, where p is a prime that is ≡ 2 (mod 3), and
N is chosen so that it divides the factor p2 − p+ 1 of p6 − 1 (in which case the
subgroup G is not contained in any proper subfield of Fq). In practice N should
have roughly the same bitlength as p; it is recommended that both have about
170 bits, in which case q has over 1000 bits.

It is not hard to set up the parameters N and p. For example, if r is chosen
so that both r2 − r + 1 and r2 + 1 are prime, then one can set N = r2 − r + 1
and p = N + r = r2 + 1 (in which case obviously p2 − p + 1 ≡ r2 − r + 1 ≡ 0
(mod N)).

A crucial innovation in [74] is that the elements of G can be represented using
only 2 log2 p bits rather than log2 q = 6 log2 p bits. Moreover, exponentiation
can be done directly with these short representations. This leads to greater
efficiency and short key sizes comparable to those in elliptic curve cryptography.
Since the mathematics is relatively simple (as in RSA), Lenstra and Verheul feel
that their system “may be regarded as the best of two worlds, RSA and ECC
[elliptic curve cryptography]” (p. 2 of [74]).
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The group used in XTR is closely related to the group of points on a certain
supersingular elliptic curve defined over Fp2 . In fact, the Weil pairing embed-
ding in [81] maps this elliptic curve group to precisely the XTR group. Since
the publication of [81], the existence of this reduction map from a supersingular
elliptic curve to the multiplicative group of a finite field has traditionally been
considered to be a security weakness arguing against the use of supersingular
curves. Thus, some cryptographers have doubted the wisdom of using a sys-
tem that is closely related to a version of elliptic curve cryptography that had
been rejected. However, Verheul [120] has pointed out that the Weil pairing
embedding reduces the elliptic curve DLP to the XTR group DLP, not vice-
versa; and he believes that the DLP in their group is likely to be strictly harder
than the DLP on the curve. In addition, the Boneh–Lynn–Shacham signature
scheme described in §6.5 shows that supersingular elliptic curves should not be
automatically ruled out for use in cryptography. By the same token, XTR also
deserves serious study and consideration.

7.4 Connection between the discrete logarithm problem
and integer factorization

At first glance it might seem that RSA has no relation to cryptographic systems
that are based on the DLP. However, the integer factorization problem and the
discrete log problem are more directly related than one might have thought.
Suppose that we want to factor an RSA modulus N = p · q, and suppose that
we have an algorithm A that finds discrete logarithms in the multiplicative
group G = (Z/NZ)∗ of integers modulo N that are prime to N . We claim that,
with little additional effort, we can use A to find the factors of N .

Namely, let g be a random integer in G. Let k be the order of g modulo N ,
and let k1 and k2 be the orders of g modulo the two prime factors of N ; note
that k = lcm(k1, k2). Because N has not yet been factored, we do not know the
values of k, k1, or k2.

Choose an exponent m that is significantly larger than N — for example, of
order N2 — and compute y = gm in G. Now apply the algorithm A to find a
discrete logarithm x of y to the base g in G. Since x and m are both discrete
logs of y to the base g, it follows that m− x is a multiple of k. Because m was
chosen to be large, we may assume that m− x 6= 0.

Let 2` be the highest power of 2 dividing m−x. We now compute g(m−x)/2` ,

g(m−x)/2`−1

, . . . , g(m−x)/2, gm−x = 1, and we let u denote the last number in

this sequence that is not equal to 1 modulo N (we take u = 1 if g(m−x)/2` = 1).
Let 2i be the highest power of 2 dividing k1, and let 2j be the highest power
dividing k2. It is easy to see that if i 6= j, then u will be a nontrivial square
root of 1: u2 ≡ 1 (mod N), u 6≡ ±1 (mod N). In that case we can immediately
factor N by taking gcd(N,u± 1).

On the other hand, if i = j, then we choose a different value of g and
start over. One can check that for randomly chosen g there is at least a 50%
chance that i 6= j. This gives us a probabilistic method of factoring N , given
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an algorithm A for the DLP in (Z/NZ)∗.
In the two cases of xedni calculus (see §6.3) and quantum computation (see

§10), this reduction of integer factorization to the DLP in (Z/NZ)∗ has been
used to show that a technique originally developed for the DLP can also be used
to factor integers.

8 NTRU

In 1996 a cryptosystem developed by three mathematicians at Brown University
was presented at the “rump session” of the annual Crypto conference in Santa
Barbara (see [53]). It is fundamentally different from both RSA and elliptic
curve cryptography, and it has some efficiency advantages over them. On the
other hand, a history of successful attacks on various versions of NTRU makes
many people hesitant to endorse its use. Whether or not it is ever approved
for practical use by the industrial standards groups, its construction is clever,
interesting, and worthy of careful study. We shall describe the version of the
NTRU encryption scheme in [53].

Three integers N , p, and q are public parameters for the system. Here p is
odd, prime to q, and much smaller than q. For example, the values N = 107,
p = 3, q = 64 were suggested in the original proposal at Crypto ’96. In general,
it is believed that the larger N is, the harder the system is to attack.

We work with N -tuples of integers, regarded as polynomials modulo XN−1.
This means that two such N -tuples f =

∑N−1
i=0 fiX

i and g =
∑N−1

i=0 giX
i are

multiplied using the convolution f ∗ g =
∑N−1

k=0 (f ∗ g)kXk with (f ∗ g)k =∑
i+j≡k (mod N) figj . We shall be reducing the coefficients of such N -tuples

modulo p and also modulo q. Let L(d, d′) denote the set of polynomials of degree
less than N having d coefficients equal to 1, d′ coefficients equal to −1, and the
rest equal to 0. Let Sf = L(d1, d1 − 1), Sg = L(d2, d2), and Sϕ = L(d3, d3) for
some choice of three integers di < N/2. A message unit M will be an N -tuple
of integers between −(p− 1)/2 and (p− 1)/2 (also regarded as a polynomial of
degree less than N).

To form her private key Alice randomly selects f ∈ Sf and g ∈ Sg, where f
must have inverses modulo p and modulo q. Let fp and fq, respectively, denote
such inverses. The polynomials f and g are kept secret. Alice’s public key
consists of the polynomial h = fq ∗ g mod q.

To encipher a message unit M , Bob randomly generates ϕ ∈ Sϕ and com-
putes C = pϕ ∗ h+M mod q. (This is another example of probabilistic rather
than deterministic encryption.) When Alice receives C, she uses her secret f
to compute a ≡ f ∗ C (mod q), where she chooses the coefficients of a in the
interval from −q/2 to q/2. She then reduces these coefficients (regarded as or-
dinary integers) modulo p and computes fp ∗ a mod p. We claim that with high
probability this is the message M . To see this, note that modulo q we have
a ≡ f ∗ (pϕ ∗ h +M) ≡ f ∗ pϕ ∗ fq ∗ g + f ∗M ≡ pϕ ∗ g + f ∗M . If the pa-
rameters were chosen carefully, usually all of the coefficients of the polynomial
pϕ ∗ g + f ∗M are between −q/2 and q/2, in which case the mod q value of

31



this polynomial is actually the true value. But if Alice knows the true value of
pϕ ∗ g + f ∗M , she need only reduce modulo p to get f ∗M mod p, and then
apply fp to get fp ∗ f ∗M ≡M (mod p).

The “moderate security” version of NTRU that was presented at Crypto ’96
(with the above values for N, p, q) was broken by Coppersmith and Shamir [30],
who used lattice-basis reduction methods [72] to find short vectors in a lattice
that arises when one tries to find the plaintext from the NTRU ciphertext and
public key. Subsequently there have been other successful attacks on certain
versions of NTRU (see, for example, [60] and [55]). In response, the inventors of
NTRU have adopted new parameters and padding schemes that they believe can
resist all known attacks. On their website (www.ntru.com) they offer valuable
cash prizes to anyone who can break their “challenges” with N -parameter equal
to 251, 347 and 503.9

In the first few years after NTRU was proposed, a common criticism was
that it did not have a signature scheme. In 2001 an NTRU signature scheme
was proposed at Eurocrypt [54], but both that scheme and a revised version
were broken soon after (see [43, 44]). A new revised signature scheme is now
available on the NTRU website, but at present the prospects for commercial
adoption of an NTRU-based signature scheme are unclear.

9 Cryptosystems Based on Other Algebraic Struc-
tures

For certain algebraic structures natural questions arise that seem to be very
difficult to answer. Are two given elements in a nonabelian group conjugate to
one another? Can a given multivariate polynomial be expressed as a sum of
polynomial multiples of a given set of polynomials? We now look at crypto-
graphic systems whose security relies upon the presumed intractability of such
problems.

9.1 Noncommutative structures — braid groups

Let G be a group. This means that we have an associative operation ◦ on
elements of G that has an identify element and inverses. (Often the symbol
◦ is suppressed, and we write g ◦ h as gh.) This operation is not necessarily
commutative, and in this subsection we suppose that G is a nonabelian group.
If the group G arises in a natural way, or if it is given abstractly by generating
elements and relations that they satisfy, it might be very difficult to determine
whether two elements described in different ways are equal. This problem —
called the word problem in group theory — is known to be algorithmically unde-
cidable [88]. Another question that in general is very difficult is the conjugacy
problem, which asks whether, given two group elements a and b, there exists

9For the integer factorization challenges posed by RSA, see www.rsasecurity.com/rsalabs/
challenges/factoring/numbers.html. For the ECDLP challenges posed by Certicom (the main
marketer of elliptic curve cryptography), see www.certicom.com.
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c ∈ G such that cac−1 = b. The conjugacy search problem supposes that a and
b are conjugate and asks us to find an element c such that cac−1 = b.

Some early attempts to construct a cryptosystem using the word prob-
lem were due to Magyarik and Wagner [76] and to Do Long Van, Jeyanthi,
Siromoney, and Subramanian [33]. In the latter paper a one-way function was
constructed by successively inserting relations in the middle of words, starting
from a word formed by two elements of G. But the resulting system was too
cumbersome to be practical (the same was true of the cryptosystem in [76]).

A more recent and more extensively studied cryptographic system based
on the structure of nonabelian groups is the braid group cryptosystem [3, 4].
Following [12], we first describe the classical braid group. Let E denote the
Euclidean plane, and let FnE denote the set of n-tuples of distinct points of E:

FnE =
{
(z1, . . . , zn)

∣∣∣ zi ∈ E, zi 6= zj if i 6= j
}
.

Let BnE denote the set of equivalence classes of elements of FnE, where two
n-tuples in FnE are equivalent if one is a permutation of the other. Then the
n-th braid group is defined to be the fundamental group G = π1BnE. That is,
G is the set of equivalence classes of continuous maps of a circle to BnE, where
two such “loops” are equivalent if one can be continuously deformed into the
other.

More concretely, choose a base point z0 = (z0
1 , . . . , z

0
n) ∈ FnE. Any element

of π1BnE is represented by a loop in BnE that can be lifted to a path in FnE
that starts at z0 and ends at a point obtained by permuting the coordinates
of z0. That is, an element of the braid group is represented by a continuous
function f(t) = (f1(t), . . . , fn(t)), 0 ≤ t ≤ 1, such that f(0) = z0 and f(1) is a
permutation of z0. The union of the graphs of fi(t), i = 1, . . . , n, in E × [0, 1]
is called a geometric braid. Figure 5, taken from [12], p. 6, shows a geometric
braid for n = 4.

Two braids A and A′ are equivalent if there is a continuous sequence of
braids A(s), 0 ≤ s ≤ 1, such that A(0) = A and A(1) = A′. The identity
braid is given by the constant function f(t) = z0, and the inverse of a braid
given by f(t) is the “backwards” braid g(t) given by g(t) = σ−1f(1− t), where
σ is the permutation such that f(1) = σ(z0). The composition of two braids
corresponding to functions f and g is given by the function h(t) defined as
follows: h(t) = f(2t) for 0 ≤ t ≤ 1/2, h(t) = σ(g(2t− 1)) for 1/2 ≤ t ≤ 1.

We now describe a key exchange system whose security is based on the
presumed intractability of the conjugacy search problem in the braid group (see
[4]). Here is how it works. Alice selects m elements a1, . . . , am of G. These
elements are publicly known. She then randomly generates a secret sequence
j1, . . . , j` of indices between 1 and m, and sets A = aj1 · · · aj` . Bob similarly
selects b1, . . . , bm and a secret element B = bk1

· · · bk` . Next , Alice conjugates
Bob’s publicly known bi by her secret element A: xi = A−1biA; and Bob does
likewise: yi = B−1aiB. Alice sends the m-tuple (x1, . . . , xm) to Bob, and Bob
sends (y1, . . . , ym) to Alice. The shared key is the commutator A−1B−1AB,
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Figure 5: A geometric braid for n = 4.

which Alice calculates as follows:

A−1yj1 · · · yj` = A−1B−1aj1 · · · aj`B = A−1B−1AB;

and which Bob calculates as follows:

(B−1xk1
· · ·xk`)−1 = (B−1A−1bk1

· · · bk`A)−1 = (B−1A−1BA)−1.

This is a clever method of arriving at a shared key. Unfortunately, it seems
to be vulnerable to certain types of attacks. Hughes [56] has shown that the
existence of a map, called the Burau representation, from the braid group to a
general linear group often enables one to use linear algebra to find the secret A
and B. The attack is complicated by the fact that the Burau representation is
not faithful — in other words, many different braids are mapped to the same
matrix — but Hughes shows that the parameters suggested in [4] are insecure.

9.2 Hidden monomials and Polly Cracker

In this subsection we describe two different public-key cryptosystems that are
based on commutative algebra. The first one is an example of various systems
developed by Patarin [91, 92] after he broke a simpler version due to Imai and
Matsumoto [90]. This cryptosystem, which has not yet been broken, is based
on the observation that a system of n linear equations in n unknowns is easy to
solve, while a system of n quadratic equations is not.

Let q be a power of 2, and let {β1, . . . , βn} be a basis for Fqn over Fq. An
element of Fqn will be written in boldface, and the corresponding n-vector over
Fq with respect to the basis {β1, . . . , βn} will be denoted by underlining. Both
plaintext and ciphertext message units will be n-vectors over Fq, denoted x and
y, respectively.
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To set up her “hidden monomial” cryptosystem, Alice first chooses two secret
affine transformations

u = Ax+ c, v = By + d, (2)

where A and B are fixed invertible n×n-matrices over Fq and c and d are fixed
n-vectors. Alice next chooses an integer h of the form

h = qα1 + qα2 − qβ1 − qβ2

that is prime to qn − 1, and she computes h′ such that hh′ ≡ 1 (mod qn − 1).
She also chooses secret nonzero elements r, s ∈ Fqn . The enciphering function
from x to y is based on the following relation between the corresponding u and
v (here v is nonzero):

uh = r+
s

v
, so that u =

(
r+

s

v

)h′
. (3)

Equivalently, the relation between u and v is:

uq
α1
uq

α2
v = uq

β1
uq

β2
(rv + s).

Alice uses this relation to set up her public key as follows. Notice that for any

fixed k the map from Fqn to Fqn given by u 7→ uq
k

is Fq-linear, and so is given
by a matrix with respect to the basis {β1, . . . , βn}. Similarly, for any fixed k,
1 ≤ k ≤ n, the map given by u 7→ βku is Fq-linear. Thus, the left-hand side
uq

α1
uq

α2
v of the above relation can be expressed in terms of the basis as a sum∑

pj(u1, . . . , un, v1, . . . , vn)βj , where each pj is a polynomial of total degree 3
in the coordinates of u and v. This polynomial is linear in the vi and is of total

degree 2 in the ui. Similarly, the right-hand side uq
β1
uq

β2
(rv+s) can be written

in the same way, where again the coefficients of the βj are polynomials of degree
1 in the vi and degree 2 in the ui. Alice can easily compute the coefficients of
the polynomials on the left and right. Finally, she uses her affine relations (2) to
transform these polynomials into polynomials in the plaintext x and ciphertext
y that are quadratic in the xi and linear in the yi. By equating the polynomial
coefficients of each βj , Alice arrives at a set of n polynomial relations among
the 2n variables x1, . . . , xn, y1, . . . , yn.

Alice’s public key consists of these n polynomial relations of total degree
3 connecting the coordinates of the plaintext and ciphertext. She keeps the
matrices A,B, the vectors c, d, and the constants r, s all secret; and if she wants,
she can also keep her basis {β1, . . . , βn} and the integer h secret as well. The
only information that Bob needs is the coefficients of the polynomial relations
between x and y.

When he sends a message, Bob must find the ciphertext y from x. Since
the degree-3 polynomials are linear in the yi, this involves solving a system of
n linear equations in n unknowns, so Bob can quickly find the ciphertext. An
eavesdropper, who knows only the ciphertext and the public key, is faced with
the difficult task of solving a system of n quadratic equations in n unknowns.
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Alice, of course, can find x from y in a much easier way. Namely, she uses the
affine relation v = By + d to determine v from y; then she goes directly from v
to u using her “hidden monomial” relation (3); and, finally, she goes from u to
x by inverting the affine map u = Ax+ c.

The above cryptosystem is a special case of a broad class of constructions
due to Patarin. Most of his systems remain unbroken, but there has not yet
been enough analysis of their security for one to be completely confident. There
are also questions of efficiency that remain to be resolved. For example, in the
system just described the public key is large, consisting of O(n4) coefficients in
Fq.

Other efforts at constructing public-key cryptosystems using commutative
algebra have been based on such hard problems as ideal membership (determin-
ing whether a given polynomial belongs to the ideal generated by a fixed set of
polynomials) and Groebner basis (finding a certain best possible set of generat-
ing polynomials for an ideal). We give a simple example of such a system (called
“Polly Cracker” by Fellows) [35], which, however, has recently been successfully
attacked [42].

Let Fq be a finite field, and let T = {ti}ni=1 be a set of variables. Alice wants
to be able to receive messages M ∈ Fq from Bob. Her secret key is a random
vector y ∈ Fn

q , and her public key is a set of polynomials B = {qj} in Fq[T ] such
that qj(y) = 0 for all j. To send the message M , Bob generates an element
p =

∑
hjqj of the ideal J ⊂ F[T ] generated by B, and sends her the polynomial

C = p+M . When Alice receives the ciphertext polynomial C, she finds M by
evaluating it at y: C(y) = p(y) +M = M .

Note that it is very easy for Alice to construct a pair

(private key = y, public key = B).

Namely, she generates a random y, chooses arbitrary polynomials q̃j , and sets
qj = q̃j − q̃j(y). But it is an open question whether she can choose the keys in
such a way as to avoid attacks such as [42].

10 Quantum Cryptography and Quantum Com-
putation

Quantum cryptography has a very different flavor from all of the types of public-
key cryptography discussed above, because it is based not on a mathematical
one-way function, but rather on a process which is known to be one-way by some
basic laws of physics. The idea was first proposed by Brassard and Bennett in the
early 1980’s [9, 8], and at present there is at least one website (www.magiqtech.
com) claiming to have commercial products for quantum key distribution.

Suppose that Alice and Bob want to agree upon a secret key — a random
sequence of bits — for use in a symmetric-key cryptosystem. Here is how they
can use quantum mechanics to do that, while at the same time determining
whether or not an unauthorized person (Eve) has been eavesdropping on their
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communications. Alice randomly chooses a polarization (that is, a line in space
and one of the two directions along that line) for each photon that she sends to
Bob. According to a basic principle of quantum mechanics, if Bob measures a
photon along the same line that Alice chose, the photon will keep its polariza-
tion. If he measures the photons along randomly chosen lines, on the average
he will measure the correct direction only half the time.

In order to determine the key, for each photon Bob chooses a line along which
to measure its polarization. He then sends Alice a list of the lines he used. Alice
informs him which of the lines agree with the ones she used for the polarization.
Bob knows the correct direction of polarization of that subsequence of photons.
Some of the photons in this subsequence are used to form the sequence of bits
for the shared key. In order to see whether or not an adversary is eavesdropping,
Alice and Bob compare the photons in the subsequence that are not being used
for the key. If Eve has been measuring the polarizations, she will have altered
many of the values by measuring them, and Bob and Alice will immediately
detect the discrepancy. On the other hand, if the sequences they compare are
in agreement, they can be confident that no one has been intercepting their
communications, and their key is secure.

There is a second application of quantum mechanics to cryptography that
is of a very different sort: quantum computation. The idea, which was first
developed in detail by Peter Shor [110], is to construct a computing device that
performs quantum mechanical experiments in order to test different alterna-
tives simultaneously. In certain situations, such a device can sift through an
exponential number of possibilities in polynomial time.

It is a challenging task to develop a quantum algorithm for the types of prob-
lems used in cryptography. The most important problems for which this has
been done are integer factorization and discrete logarithms (including elliptic
curve discrete logarithms [97]). Actually, the basic type of problem that a quan-
tum device can tackle is the discrete logarithm. The proof that it can also factor
integers [110] is based on the technique in §7.4 for using a discrete log algorithm
in order to factor an integer. So far no one has found quantum algorithms for
hidden monomial, NTRU, or braid group cryptosystems. If quantum computing
ever becomes practical, it will then be necessary to have cryptosystems available
for real-world use (and approved by the industrial standards bodies) that are
not based on integer factorization or discrete logarithms.

11 Further Reading

There are many books devoted to algorithmic number theory and public-key
cryptography. A starting point for obtaining the relevant mathematical back-
ground is the book by Koblitz [67]. Detailed treatments of topics in algorithmic
number theory such as primality testing and integer factorization are given by
Cohen [28] and Crandall and Pomerance [31]. Comprehensive books on cryp-
tography include those by Menezes, van Oorschot and Vanstone [84], Stinson
[116], and Mao [78]. The mathematics behind elliptic curve cryptography is well
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explained by Washington [121]. See Hankerson, Menezes and Vanstone [49] for
an extensive coverage of implementation aspects of elliptic curve cryptography.
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